Quality-Improved GaN Epitaxial Layers Grown on Striped Patterned Sapphire Substrates Ablated by Femtosecond Laser
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reed, M.D.; Kryliouk, O.M.; Mastro, M.A.; Anderson, T.J. Growth and characterization of single-crystalline gallium nitride using (100) LiAlO2 substrates. J. Cryst. Growth 2005, 274, 14–20. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W. Epitaxial growth of GaN films on unconventional oxide substrates. J. Mater. Chem. 2014, 2, 9342–9358. [Google Scholar] [CrossRef]
- Le Vaillant, Y.M.; Bisaro, R. Caracterization of AIN buffer layers on (0001)-sapphire substrates. Mater. Sci. Eng. B 1997, 50, 32–37. [Google Scholar] [CrossRef]
- Sakai, A.; Sunakawa, H. Defect structure in selectively grown GaN films with low threading dislocation density. Appl. Phys. Lett. 1997, 71, 2259–2261. [Google Scholar] [CrossRef]
- Nakada, N.; Nakaji, M. Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire. Appl. Phys. Lett. 2000, 76, 1804–1806. [Google Scholar] [CrossRef]
- Fan, S.; Villeneuve, P.R. Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes. IEEE J. Quantum Electron. 2002, 36, 1123–1130. [Google Scholar] [CrossRef]
- David, A.; Meier, C. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Appl. Phys. Lett. 2005, 87, 101107. [Google Scholar] [CrossRef] [Green Version]
- Na, S.I.; Ha, G.Y. Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes. IEEE Photonics Technol. Lett. 2006, 18, 1512–1514. [Google Scholar] [CrossRef]
- Fujii, T.; Gao, Y. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 2004, 84, 855–857. [Google Scholar] [CrossRef]
- Tun, C.J.; Sheu, J.K. Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer. IEEE Photonics Technol. Lett. 2006, 18, 274–276. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwack, H.S. Spatial correlation between optical properties and defect formation in GaN thin films laterally overgrown on cone-shaped patterned sapphire substrates. J. Appl. Phys. 2010, 107, 103506. [Google Scholar] [CrossRef]
- Tadatomo, K.; Okagawa, H. High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy. Jpn. J. Appl. Phys. 2001, 40, L583–L585. [Google Scholar] [CrossRef]
- Chang, S.J.; Lin, Y.C. Nitride-based LEDs fabricated on patterned sapphire substrates. Solid-State Electron. 2003, 47, 1539–1542. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, J.T. Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire. Phys. Status Solidi 2010, 3, 2169–2173. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sermon Wu, Y. Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire. Appl. Phys. Lett. 2010, 96, 051109. [Google Scholar] [CrossRef]
- Suihkonen, S.; Ali, M. Patterning of sapphire/GaN substrates. Phys. Status Solidi 2011, 8, 1509–1512. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X. High-Performance GaN-Based Light-Emitting Diodes on Patterned Sapphire Substrate with a Novel Patterned SiO2/Al2O3 Passivation Layer. Appl. Phys. Express 2013, 6, 2103. [Google Scholar] [CrossRef]
- Yin, S.; Wang, C. Single chip super broadband InGaN/GaN LED enabled by nanostructured substrate. Opt. Express 2014, 22, A1380. [Google Scholar] [CrossRef] [PubMed]
- Hang, D.R.; Chou, M. Optical investigations of non-polar bm{m}- plane InGaN/GaN multiple quantum wells grown on LiAlO2 (100) by using MOVPE. J.-Korean Phys. Soc. 2009, 55, 250. [Google Scholar] [CrossRef]
- Scherrer, P.; Gottingen, N.G.W. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Math. Physik. Kl. 1918, A2, 96–100. [Google Scholar]
- Vajpeyi, A.P.; Tripathy, S. Investigation of optical properties of nanoporous GaN films. Phys. E 2005, 28, 141–149. [Google Scholar] [CrossRef]
- Perlin, P.; Jauberthie-Carillon, C. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B 1992, 45, 83–89. [Google Scholar] [CrossRef]
- Tripathy, S.; Chua, S.J. Micro-Raman investigation of strain in GaN and AlxGa1−x N/GaN heterostructures grown on Si(111). J. Appl. Phys. 2002, 92, 3503–3510. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, Y. Growth of high quality GaN on a novel designed bonding-thinned template by HVPE. CrystEngComm 2012, 14, 4777. [Google Scholar] [CrossRef]
- Ponce, F.A.; Gil, B. Group III Nitride Semiconductor Compounds; Oxford University Press: Oxford, UK, 1998; p. 123. [Google Scholar]
- Maruska, H.P.; Hill, D.W. Free-standing non-polar gallium nitride substrates. Opto-Electron. Rev. 2003, 11, 7–17. [Google Scholar]
- Manifacier, J.C.; De Murcia, M. Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 1977, 41, 127–135. [Google Scholar] [CrossRef]
- Shinde, V.R.; Gujar, T.P. Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 2006, 96, 326–330. [Google Scholar] [CrossRef]
- Sun, L.; Zou, J. Nonpolar m-plane GaN-based light-emitting diodes on LiAlO2, (100) substrate. J. Mater. Sci. Mater. Electron. 2016, 27, 2049–2053. [Google Scholar] [CrossRef]
Samples | E2 Phonon Peak (cm−1) | E2 Phonon FWHM (cm−1) | Compressive Stress (GPa) |
---|---|---|---|
planar substrate | 568.8 | 8.1 | 0.45 |
striped PSS | 569.9 | 6.7 | 0.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zou, J.; Lin, X.; Wu, W.; Li, W.; Yang, B.; Shi, M. Quality-Improved GaN Epitaxial Layers Grown on Striped Patterned Sapphire Substrates Ablated by Femtosecond Laser. Appl. Sci. 2018, 8, 1842. https://doi.org/10.3390/app8101842
Xu Y, Zou J, Lin X, Wu W, Li W, Yang B, Shi M. Quality-Improved GaN Epitaxial Layers Grown on Striped Patterned Sapphire Substrates Ablated by Femtosecond Laser. Applied Sciences. 2018; 8(10):1842. https://doi.org/10.3390/app8101842
Chicago/Turabian StyleXu, Yichao, Jun Zou, Xiaoyan Lin, Wenjuan Wu, Wenbo Li, Bobo Yang, and Mingming Shi. 2018. "Quality-Improved GaN Epitaxial Layers Grown on Striped Patterned Sapphire Substrates Ablated by Femtosecond Laser" Applied Sciences 8, no. 10: 1842. https://doi.org/10.3390/app8101842
APA StyleXu, Y., Zou, J., Lin, X., Wu, W., Li, W., Yang, B., & Shi, M. (2018). Quality-Improved GaN Epitaxial Layers Grown on Striped Patterned Sapphire Substrates Ablated by Femtosecond Laser. Applied Sciences, 8(10), 1842. https://doi.org/10.3390/app8101842