# An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Network Model

## 4. Design of Network Coding Tree Algorithm

## 5. Design of Greedy Grouping Algorithm

## 6. Numerical Results and Analysis

**A.**

**Performance Indicators**

**B.**

**Simulation Results and Analysis**

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Zhang, C.; Lai, C.; Lai, Y.; Wu, Z.; Chao, H. An inferential real-time falling posture reconstruction for Internet of healthcare things. J. Netw. Comput. Appl.
**2017**, 89, 86–95. [Google Scholar] [CrossRef] - Ning, Z.; Xia, F.; Hu, X.; Chen, Z.; Obaidat, M. Social-oriented Adaptive Transmission in Opportunistic Internet of Smartphones. IEEE Trans. Ind. Inform.
**2017**, 13, 810–820. [Google Scholar] [CrossRef] - Ning, Z.; Xia, F.; Ullah, N.; Kong, X.; Hu, X. Vehicular Social Networks: Enabling Smart Mobility. IEEE Commun. Mag.
**2017**, 55, 49–55. [Google Scholar] [CrossRef] - Pierre, S.; Beaubrun, R. Integrating routing and survivability in fault-tolerant computer network design. Comput. Commun.
**2000**, 23, 317–327. [Google Scholar] [CrossRef] - Chu, K.-C.; Lin, F.Y.-S. Survivability and performance optimization of mobile wireless communication networks in the event of base station failure. Comput. Electr. Eng.
**2006**, 32, 50–64. [Google Scholar] [CrossRef] - Tipper, D.; Dahlberg, T.; Shin, H.; Charnsripinyo, C. Providing fault tolerance in wireless access networks. IEEE Commun. Mag.
**2002**, 40, 58–64. [Google Scholar] [CrossRef] - Bose, I.; Eryarsoy, E.; He, L. Multi-period design of survivable wireless access networks under capacity constraints. Decis. Support Syst.
**2005**, 38, 529–538. [Google Scholar] [CrossRef] - Reddy, T.; Sriram, S.; Manoj, B.S.; Murthy, C. MuSeQoR: Multi-path failure-tolerant security-aware QoS routing in ad hoc wireless networks. Comput. Netw.
**2006**, 50, 1349–1383. [Google Scholar] [CrossRef] - Qiu, T.; Zhao, A.; Xia, F.; Si, W.; Wu, D. ROSE: Robustness Strategy for Scale-Free Wireless Sensor Networks. IEEE/ACM Trans. Netw.
**2017**, 1–16. [Google Scholar] [CrossRef] - Chen, X.; Kim, Y.-A.; Wang, B.; Wei, W.; Shi, Z.; Song, Y. Fault-tolerant monitor placement for out-of-band wireless sensor network monitoring. Ad Hoc Netw.
**2012**, 10, 62–74. [Google Scholar] [CrossRef] - Boukerche, A.; NelemPazzi, R.W.; Araujo, R.B. Fault-tolerant wireless sensor network routing protocols for the supervision of context-aware physical environments. J. Parallel Distrib. Comput.
**2006**, 66, 586–599. [Google Scholar] [CrossRef] - Ning, Z.; Liu, L.; Xia, F.; Jedari, B.; Lee, I.; Zhang, W. CAIS: A Copy Adjustable Incentive Scheme in Community-based Socially-Aware Networking. IEEE Trans. Veh. Technol.
**2017**, 66, 3406–3419. [Google Scholar] [CrossRef] - Qiu, T.; Chen, N.; Li, K.; Qiao, D.; Fu, Z. Heterogeneous ad hoc networks: Architectures, advances and challenges. Ad Hoc Netw.
**2017**, 55, 143–152. [Google Scholar] [CrossRef] - Lee, G.; Murray, A.T. Maximal covering with network survivability requirements in wireless mesh networks, Computers. Environ. Urban Syst.
**2010**, 34, 49–57. [Google Scholar] [CrossRef] - Benyamina, D.; Hafid, A.; Gendreau, M.; Maureira, J.C. On the design of reliable wireless mesh network infrastructure with QoS constraints. Comput. Netw.
**2011**, 55, 1631–1647. [Google Scholar] [CrossRef] - Hsu, C.-Y.; Wu, J.-L.C.; Wang, S.-T.; Hong, C.-Y. Survivable and delay-guaranteed backbone wireless mesh network design. J. Parallel Distrib. Comput.
**2008**, 68, 306–320. [Google Scholar] [CrossRef] - Bisti, L.; Lenzini, L.; Mingozzi, E.; Vallati, C.; Erta, A.; Malesci, U. Improved network resilience of wireless mesh networks using MPLS and Fast Re-Routing techniques. Ad Hoc Netw.
**2011**, 9, 1448–1460. [Google Scholar] [CrossRef] - Jiang, S.; Xue, Y. Providing survivability against jamming attack for multi-radio multi-channel wireless mesh networks. J. Netw. Comput. Appl.
**2011**, 34, 443–454. [Google Scholar] [CrossRef] - Al-Kofahi, O.; Kamal, A. Network coding-based protection of many-to-one wireless flows. IEEE J. Sel. Areas Commun.
**2009**, 27, 797–813. [Google Scholar] [CrossRef] - Misra, S.; Gupta, A.; Krishna, P.V.; Agarwal, H.; Obaidat, M.S. An adaptive learning approach for fault-tolerant routing in Internet of Things. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2012), Paris, France, 1–4 April 2012; pp. 815–819. [Google Scholar]
- Wang, J.; Liu, Z.; Shen, Y.; Chen, H.; Zheng, L.; Qiu, H.; Shu, S. A distributed algorithm for inter-layer network coding-based multimedia multicast in Internet of Things. Comput. Electr. Eng.
**2015**. [Google Scholar] [CrossRef] - Qiu, T.; Liu, X.; Feng, L.; Zhou, Y.; Zheng, K. An efficient tree-based self-organizing protocol for internet of things. IEEE Access
**2016**, 4, 3535–3546. [Google Scholar] [CrossRef] - Otto, C.; Milenkovic, A.; Sanders, C.; Jovanov, E. System architecture of a wireless body area sensor network for ubiquitous health monitoring. J. Mob. Multimedia
**2006**, 1, 307–326. [Google Scholar] - Latre, B.; Braem, B.; Moerman, I.; Blondia, C.; Reusens, E.; Joseph, W.; Demeester, P. A low-delay protocol for multi-hop wireless body area networks. In Proceedings of the Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking ＆ Services, Philadelphia, PA, USA, 6–10 August 2007; pp. 1–8. [Google Scholar]
- Zhou, G.; Lu, J.; Wan, C.-Y.; Yarvis, M.D.; Stankovic, J.A. Body QoS: Adaptive and radio-agnostic QoS for body sensor networks. In Proceedings of the IEEE 27th Conference on Computer Communications (INFOCOM 2008), Phoenix, AZ, USA, 13–18 April 2008; pp. 565–573. [Google Scholar]
- Wu, G.; Ren, J.; Xia, F.; Xu, Z. An adaptive fault-tolerant communication scheme for body sensor networks. Sensors
**2010**, 10, 9590–9608. [Google Scholar] [CrossRef] [PubMed] - Qiu, T.; Qiao, R.; Wu, D. EABS: An Event-Aware Backpressure Scheduling Scheme for Emergency Internet of Things. IEEE Trans. Mob. Comput.
**2017**. [Google Scholar] [CrossRef] - Lipschutz, S.; Lipson, M. Schaum’s Outlines of Linear Algebra, Tata McGraw-hill edition; The McGraw-Hill Companies, Inc.: Delhi, India, 2001; pp. 69–80. [Google Scholar]
- Li, S.Y.; Yeung, R.W.; Cai, N. Linear network coding. IEEE Trans. Inf. Theory
**2003**, 49, 371–381. [Google Scholar] [CrossRef] - Ahlswede, R.; Cai, N.; Li, S.; Yeung, R. Network information flow. IEEE Trans. Inf. Theory
**2000**, 46, 1204–1216. [Google Scholar] [CrossRef] - Hou, W.; Ning, Z.; Guo, L. Temporal, Functional and Spatial Big Data Computing Framework for Large-Scale Smart Grid. IEEE Trans. Emerg. Top. Comput.
**2017**. [Google Scholar] [CrossRef] - Guo, L.; Ning, Z.; Song, Q.; Huang, F.; Jamalipour, A. Joint Encoding and Grouping Multiple Node Pairs for Physical-Layer Network Coding with Low-Complexity Algorithm. IEEE Trans. Veh. Technol.
**2017**. [Google Scholar] [CrossRef] - Qiu, T.; Liu, X.; Han, M.; Li, M.; Zhang, Y. SRTS: A Self-Recoverable Time Synchronization for Sensor Networks of Healthcare IoT. Comput. Netw.
**2017**. [Google Scholar] [CrossRef] - Park, K.; Park, J.; Lee, J. An IoT System for Remote Monitoring of Patients at Home. Appl. Sci.
**2017**, 7. [Google Scholar] [CrossRef] - Aly, S.A.; Kamal, A.E.; Al-Kofahi, O.M. Network protection codes: Providing self-healing in autonomic networks using network coding. Comput. Netw.
**2012**, 56, 99–111. [Google Scholar] [CrossRef] - Rouayheb, S.; Sprintson, A.; Georghiades, C. Robust Network codes for unicast connections: A case study. IEEE/ACM Trans. Netw.
**2011**, 19, 644–656. [Google Scholar] [CrossRef]

**Figure 4.**Coding tree algorithm implementation process. (

**a**) Tree-construction; (

**b**) Result of two iterations; (

**c**) Result of tree-modification; (

**d**) Tree establishment.

**Figure 8.**Comparison of the total number of generated leaves nodes between breadth-first search (BFS) and depth-first search (DFS) algorithms.

**Figure 11.**Comparison of ED with the number of packets sent forNetwork Coding-based Fault-tolerant Mechanism (NCFM), 1 + 1 and 1:N.

Algorithm for Constructing Coding Tree |
---|

1: Use the DFS (depth-first search) or BFS (breadth-first search) algorithm to search the entire network topology to generate a node-rooted tree rooted at ${L}_{s}$. |

2: If there exist sensors which are leaf nodes in tree, denote it as u. |

3: End if |

4: Keep on search until finding one u’ neighbor node who is not u’ parent node, denote it as x. |

5: connect the node u and x to construct a ring, denote it as C. |

6: Traverse all the nodes in ring C until finding one sensor v whose ${L}_{s}$ neighbor node w in not in ring C. |

7: IF node u and v are already connected, then Cut the loop directly in front or behind v. |

8: Else |

9: Cut the ring on both sides of v, Repeat steps 4–6 until tree trimming ends. |

10: End if |

11: keep on Pruning trees until There is no leaf node in the tree. |

12: The algorithm ends. |

Names of Data Structures | Functions |
---|---|

FindTree | Look for DFS_tree |

ModTree | Prune DFS_tree and allocate encoding coefficient |

Greedy_Group | Logically group the topology that does not meet the coding algorithm condition |

GaloisField | Galois field, where encoding is done |

nc_node | Define network coding node class |

nc_generate_xy | Generate the node coordinates, by which connectivity degree of nodes can be determine |

test_connectivity | Measure the connectivity of network topology |

nc_independence | Judge whether the received encoding combinations is linearly independent |

nc_peform_transmission | Select the node to send packets, and do the encoding operation |

nc_update | Judge whether the received encoding combinations is linearly independent, and done the decoding operation |

Algorithm for Constructing Greedy Grouping |
---|

1: Define the variable |

2: Stores the scheduled source node, $SchdSet=\phi $; |

3: Initialize the encoding group number, $coding\_lable=0$; |

4: Initialize the cluster number, $cluster\_id=0$; |

5: Start grouping |

6: Initialize source node index in group, $index=0$; |

7: Calculate the minimum cut h between ${L}_{s}$ and destination node |

8: Define a boolean variable Found, If the source node joins the current cluster, it is true, $Found=TRUE$; |

9: $While(|SchdSet|<|{U}_{s}|)do$ |

10: $x=\phi $; |

11: $if(index>h-2||Found==FALSE)then$ |

12: $cluster\_id++$; |

13: $index++$; |

14: End if |

15: $coding\_lable++$; |

16: x={choose the sensor u with maximum connectivity degree}, $u\notin SchdSet$ |

17: $if(x==\phi )then$ |

18: $Found=FALSE$; |

19: Else |

20: $SchdSet=SchdSet\cup x$; |

21: $Schedule[cluster\_id][index]=x$; |

22: Complete a node grouping, jump to the next one |

23: End if |

24: End While |

Parameters Value |
---|

Attenuation model two ray |

Channel capacity 2 Mbit/s |

Signal transmission range 250 m |

Signal interference range 550 m |

Packet size 512 Byte |

Output queue type FIFO (First-In First-Out) |

Cache capacity 50 packets |

energy model generic radio energy model |

Simulation area 1000 m × 1000 m |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Peng, Y.; Wang, X.; Guo, L.; Wang, Y.; Deng, Q. An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems. *Appl. Sci.* **2017**, *7*, 817.
https://doi.org/10.3390/app7080817

**AMA Style**

Peng Y, Wang X, Guo L, Wang Y, Deng Q. An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems. *Applied Sciences*. 2017; 7(8):817.
https://doi.org/10.3390/app7080817

**Chicago/Turabian Style**

Peng, Yuhuai, Xiaojie Wang, Lei Guo, Yichun Wang, and Qingxu Deng. 2017. "An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems" *Applied Sciences* 7, no. 8: 817.
https://doi.org/10.3390/app7080817