Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction
Abstract
:1. Introduction
2. Methods
2.1. Wavepacket Dynamics
2.2. Computational Details for Dynamics
2.2.1. Deuterium (D)
2.2.2. Ethylene
2.2.3. 1,3-Cyclohexadiene (CHD)
2.3. X-ray Scattering
3. Results
3.1. Simple Model
3.2. Simulations
3.2.1. Deuterium (D)
3.2.2. Ethylene
3.2.3. 1,3-Cyclohexadiene (CHD)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
XFEL | X-ray Free-Electron Laser |
LCLS | Linac Coherent Light Source |
IAM | Independent Atom Model |
CHD | 1,3-cyclohexadiene |
FWHM | Full Width at Half Maximum |
References
- Mark, H.; Wierl, R. Über Elektronenbeugung am einzelnen Molekül. Naturwissenschaften 1930, 18, 205. [Google Scholar] [CrossRef]
- Hargittai, I.; Hargittai, M. Stereochemical Applications of Gas-Phase Electron Diffraction: Part A the Electron Diffraction Technique, 1st ed.; VCH: New York, NY, USA, 1988. [Google Scholar]
- Warren, B.E. X-ray Diffraction; Courier Corporation: North Chelmsford, MA, USA, 1969. [Google Scholar]
- Rentzepis, P.M.; Helliwell, J. (Eds.) Time Resolved Electron and X-ray Diffraction, 1st ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Ischenko, A.A.; Weber, P.M.; Miller, R.J.D. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem. Rev. 2017. submitted. [Google Scholar]
- Minitti, M.P.; Budarz, J.M.; Kirrander, A.; Robinson, J.S.; Ratner, D.; Lane, T.J.; Zhu, D.; Glownia, J.M.; Kozina, M.; Lemke, H.T.; et al. Imaging molecular motion: Femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 2015, 114, 255501. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guehr, M.; Shen, X.; Li, R.; Vecchione, T.; Coffee, R.; Corbett, J.; Fry, A.; Hartmann, N.; Hast, C.; et al. Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules. Phys. Rev. Lett. 2016, 117, 153002. [Google Scholar] [CrossRef] [PubMed]
- Glownia, J.M.; Natan, A.; Cryan, J.P.; Hartsock, R.; Kozina, M.; Minitti, M.P.; Nelson, S.; Robinson, J.; Sato, T.; van Driel, T.; et al. Self-Referenced Coherent Diffraction X-ray Movie of Ångström- and Femtosecond-Scale Atomic Motion. Phys. Rev. Lett. 2016, 117, 153003. [Google Scholar] [CrossRef] [PubMed]
- Stankus, B.; Budarz, J.M.; Kirrander, A.; Rogers, D.; Robinson, J.; Lane, T.J.; Ratner, D.; Hastings, J.; Minitti, M.P.; Weber, P.M. Femtosecond photodissociation dynamics of 1,4-diiodobenzene by gas-phase X-ray scattering and photoelectron spectroscopy. Faraday Discuss. 2016, 194, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Budarz, J.M.; Minitti, M.P.; Cofer-Shabica, D.V.; Stankus, B.; Kirrander, A.; Hastings, J.B.; Weber, P.M. Observation of Femtosecond Molecular Dynamics via Pump-probe Gas Phase X-ray Scattering. J. Phys. B 2016, 49, 034001. [Google Scholar] [CrossRef]
- Minitti, M.P.; Budarz, J.M.; Kirrander, A.; Robinson, J.; Lane, T.J.; Ratner, D.; Saita, K.; Northey, T.; Stankus, B.; Cofer-Shabica, V.; et al. Toward structural femtosecond chemical dynamics: Imaging chemistry in space and time. Faraday Discuss. 2014, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Levantino, M.; Schiro, G.; Lemke, H.T.; Cottone, G.; Glownia, J.M.; Zhu, D.; Chollet, M.; Ihee, H.; Cupane, A.; Cammarata, M. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat. Commun. 2015, 6, 6772. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, J.G.; Nozawa, S.; Sato, T.; Oang, K.Y.; Kim, T.W.; Ki, H.; Jo, J.; Park, S.; Song, C.; et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 2015, 518, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Bostedt, C.; Bozek, J.D.; Bucksbaum, P.H.; Coffee, R.N.; Hastings, J.B.; Huang, Z.; Lee, R.W.; Schorb, S.; Corlett, J.N.; Denes, P.; et al. Ultra-fast and ultra-intense X-ray sciences: First results from the Linac Coherent Light Source free-electron laser. J. Phys. B 2013, 46, 164003. [Google Scholar] [CrossRef]
- Pemberton, C.C.; Zhang, Y.; Saita, K.; Kirrander, A.; Weber, P.M. From the (1B) Spectroscopic State to the Photochemical Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A Spectral Observation of the Complete Reaction Path. J. Phys. Chem. A 2015, 119, 8832–8845. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G. Chemical Applications of Ultrafast Spectroscopy; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Lorincz, A.; Novak, F.A.; Rice, S.A. Relaxation of Large Molecules Following Ultrafast Excitation. In Ultrafast Phenomena IV; Auston, D., Eisenthal, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 38, pp. 387–389. [Google Scholar]
- Andor, L.; Lörincz, A.; Siemion, J.; Smith, D.D.; Rice, S.A. Shot-noise-limited detection scheme for two-beam laser spectroscopies. Rev. Sci. Instrum. 1984, 55, 64–67. [Google Scholar] [CrossRef]
- Rosker, M.J.; Dantus, M.; Zewail, A.H. Femtosecond real-time probing of reactions. I. The technique. J. Chem. Phys. 1988, 89, 6113–6127. [Google Scholar] [CrossRef]
- Thompson, J.; Weber, P.M.; Estrup, P.J. Pump-Probe Low Energy Electron Diffraction. In Proceedings of the SPIE Conference on Time Resolved Electron and X-ray Diffraction, San Diego, CA, USA, 9 July 1995; Volume 2521, pp. 113–122. [Google Scholar]
- Geiser, J.D.; Weber, P.M. Pump-probe diffraction imaging of vibrational wave functions. J. Chem. Phys. 1998, 108, 8004–8011. [Google Scholar] [CrossRef]
- Dudek, R.C.; Weber, P.M. Ultrafast Diffraction Imaging of the Electrocyclic Ring-Opening Reaction of 1,3-Cyclohexadiene. J. Phys. Chem. A 2001, 105, 4167–4171. [Google Scholar] [CrossRef]
- Gosselin, J.L.; Minitti, M.P.; Rudakov, F.M.; Solling, T.I.; Weber, P.M. Energy Flow and Fragmentation Dynamics of N,N-Dimethylisopropylamine. J. Phys. Chem. A 2006, 110, 4251–4255. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, J.D.; Rudakov, F.M.; Weber, P.M. Electronic Spectroscopy and Ultrafast Energy Relaxation Pathways in the Lowest Rydberg States of Trimethylamine. J Phys. Chem. A 2008, 112, 10736–10743. [Google Scholar] [CrossRef] [PubMed]
- Kirrander, A.; Fielding, H.H. Coherent control in the continuum: Autoionisation of Xe. J. Phys. B 2007, 40, 897. [Google Scholar] [CrossRef]
- Suominen, H.J.; Kirrander, A. How to observe coherent electron dynamics directly. Phys. Rev. Lett. 2014, 112, 043002. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, A.R.; Harrington, J.; Kirrander, A.; Cacho, C.; Springate, E.; Bryan, W.A.; Minns, R.S. VUV Excitation of a Vibrational Wavepacket in D2 Measured through Strong-Field Dissociative Ionization. New J. Phys. 2015, 17, 103013. [Google Scholar] [CrossRef]
- Kirrander, A.; Jungen, C.; Fielding, H.H. Control of ionization and dissociation with optical pulse trains. Phys. Chem. Chem. Phys. 2010, 12, 8948–8952. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.M.; Thantu, N. Photoionization via transient states: A coherent probe of molecular eigenstates. Chem. Phys. Lett. 1992, 197, 556–561. [Google Scholar] [CrossRef]
- Thantu, N.; Weber, P.M. Dependence of two photon ionization photoelectron spectra on laser coherence bandwidth. Chem. Phys. Lett. 1993, 214, 276–280. [Google Scholar] [CrossRef]
- Thantu, N.; Weber, P.M. Resonant two photon ionization of phenanthrene via its transient S2 state. Z. Phys. D 1993, 28, 191–194. [Google Scholar] [CrossRef]
- Freed, K.F.; Nitzan, A. Intramolecular vibrational energy redistribution and the time evolution of molecular fluorescence. J. Chem. Phys. 1980, 73, 4765–4778. [Google Scholar] [CrossRef]
- Lorincz, A.; Smith, D.D.; Novak, F.; Kosloff, R.; Tannor, D.J.; Rice, S.A. Rotational state dependence of pyrazine fluorescence: Initial decays for the vibrationless 1B3u state. J. Chem. Phys. 1985, 82, 1067–1072. [Google Scholar] [CrossRef]
- Novak, F.; Kosloff, R.; Tannor, D.J.; Lorincz, A.; Smith, D.D.; Rice, S.A. Wave packet evolution in isolated pyrazine molecules: Coherence triumphs over chaos. J. Chem. Phys. 1985, 82, 1073–1078. [Google Scholar] [CrossRef]
- Garavelli, M.; Page, C.S.; Celani, P.; Olivucci, M.; Schmid, W.E.; Trushin, S.A.; Fuss, W. Reaction Path of a sub-200 fs Photochemical Electrocyclic Reaction. J. Phys. Chem. A 2001, 105, 4458–4469. [Google Scholar] [CrossRef]
- Kirrander, A.; Fielding, H.H.; Jungen, C. Excitation, dynamics and control of rotationally autoionizing Rydberg states of H2. J. Chem. Phys. 2007, 127, 164301. [Google Scholar] [CrossRef] [PubMed]
- Kirrander, A.; Jungen, C.; Fielding, H.H. Localization of electronic wave packets in H2. J. Phys. B 2008, 41, 074022. [Google Scholar] [CrossRef]
- Kirrander, A.; Fielding, H.H.; Jungen, C. Optical phase and the ionization-dissociation dynamics of excited H2. J. Chem. Phys. 2010, 132, 024313. [Google Scholar] [CrossRef] [PubMed]
- Shalashilin, D.V. Nonadiabatic dynamics with the help of multiconfigurational Ehrenfest method: Improved theory and fully quantum 24D simulation of pyrazine. J. Chem. Phys. 2010, 132, 244111. [Google Scholar] [CrossRef] [PubMed]
- Shalashilin, D.V. Multiconfigurational Ehrenfest approach to quantum coherent dynamics in large molecular systems. Faraday Discuss. 2011, 153, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.G.; Coe, J.D.; Virshup, A.M.; Martinez, T.J. Implementation of ab initio multiple spawning in the MOLPRO quantum chemistry package. Chem. Phys. 2008, 347, 3–16. [Google Scholar] [CrossRef]
- Makhov, D.V.; Glover, W.J.; Martinez, T.J.; Shalashilin, D.V. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys. 2014, 141, 054110. [Google Scholar] [CrossRef] [PubMed]
- Richings, G.; Polyak, I.; Spinlove, K.; Worth, G.; Burghardt, I.; Lasorne, B. Quantum dynamics simulations using Gaussian wavepackets: The vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269–308. [Google Scholar] [CrossRef]
- Shalashilin, D.V.; Child, M.S. The phase space CCS approach to quantum and semiclassical molecular dynamics for high-dimensional systems. Chem. Phys. 2004, 304, 103–120. [Google Scholar] [CrossRef]
- Shalashilin, D.V.; Child, M.S.; Kirrander, A. Mechanisms of double ionization in strong laser field from simulation with Coupled Coherent States. Chem. Phys. 2008, 347, 257–262. [Google Scholar] [CrossRef]
- Kirrander, A.; Shalashilin, D.V. Quantum dynamics with fermion coupled coherent states. Phys. Rev. A 2011, 84, 033406. [Google Scholar] [CrossRef]
- Heller, E.J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 1981, 14, 368–375. [Google Scholar] [CrossRef]
- Makhov, D.V.; Saita, K.; Martinez, T.J.; Shalashilin, D.V. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging. Phys. Chem. Chem. Phys. 2015, 17, 3316–3325. [Google Scholar] [CrossRef] [PubMed]
- Saita, K.; Shalashilin, D.V. On-the-fly ab initio molecular dynamics with multiconfigurational Ehrenfest method. J. Chem. Phys. 2012, 137, 22A506. [Google Scholar] [CrossRef] [PubMed]
- Wolniewicz, L. Nonadiabatic energies of the ground state of the hydrogen molecule. J. Chem. Phys. 1995, 103, 1792–1799. [Google Scholar] [CrossRef]
- Staszewska, G.; Wolniewicz, L. Adiabatic Energies of Excited 1Σu States of the Hydrogen Molecule. J. Mol. Spectrosc. 2002, 212, 208–212. [Google Scholar] [CrossRef]
- Wolniewicz, L.; Staszewska, G. →X transition moments for the hydrogen molecule. J. Mol. Spectrosc. 2003, 217, 181–185. [Google Scholar] [CrossRef]
- Mohr, P.J.; Taylor, B.N.; Newell, D.B. CODATA Recommended Values of the Fundamental Physical Constants: 2010. Rev. Mod. Phys. 2012, 84, 1527. [Google Scholar] [CrossRef]
- Deb, S.; Weber, P.M. The Ultrafast Pathway of Photon-Induced Electrocyclic Ring-Opening Reactions: The Case of 1,3-Cyclohexadiene. Ann. Rev. Phys. Chem. 2011, 62, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Makhov, D.V.; Martinez, T.J.; Shalashilin, D.V. Toward fully quantum modelling of ultrafast photodissociation imaging experiments. Treating tunnelling in the ab initio multiple cloning approach. Faraday Discuss. 2016, 194, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. others. MOLPRO, Version 2012.1, a Package of Ab Initio Programs.
- Brown, R.C.; Heller, E.J. Classical trajectory approach to photodissociation: The Wigner method. J. Chem. Phys. 1981, 75, 186–188. [Google Scholar] [CrossRef]
- Tao, H.; Levine, B.G.; Martinez, T.J. Ab Initio Multiple Spawning Dynamics Using Multi-State Second-Order Perturbation Theory. J. Phys. Chem. A 2009, 113, 13656–13662. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Glover, W.J.; Schuurman, M.S.; Martinez, T.J. Role of Rydberg States in the Photochemical Dynamics of Ethylene. J. Phys. Chem. A 2012, 116, 2808–2818. [Google Scholar] [CrossRef] [PubMed]
- Sellner, B.; Barbatti, M.; Müller, T.; Domcke, W.; Lischka, H. Ultrafast non-adiabatic dynamics of ethylene including Rydberg states. Mol. Phys. 2013, 111, 2439–2450. [Google Scholar] [CrossRef]
- Champenois, E.G.; Shivaram, N.H.; Wright, T.W.; Yang, C.S.; Belkacem, A.; Cryan, J.P. Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene. J. Chem. Phys. 2016, 144, 014303. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Horio, T.; Suzuki, T. Ultrafast Deactivation of the ππ∗(V) State of Ethylene Studied Using Sub-20 fs Time-Resolved Photoelectron Imaging. J. Phys. Chem. A 2015, 119, 9518–9523. [Google Scholar] [CrossRef] [PubMed]
- Tao, H. First Principles Molecular Dynamics and Control of Photochemical Reactions. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2011. [Google Scholar]
- Eisenberger, P.; Platzman, P.M. Compton Scattering of X-rays from Bound Electrons. Phys. Rev. A 1970, 2, 415–423. [Google Scholar] [CrossRef]
- De Groot, F.; Kotani, A. Core Level Spectroscopy of Solids, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Henriksen, N.E.; Møller, K.B. On the Theory of Time-Resolved X-ray Diffraction. J. Phys. Chem. B 2008, 112, 558. [Google Scholar] [CrossRef] [PubMed]
- Kirrander, A.; Saita, K.; Shalashilin, D.V. Ultrafast X-ray Scattering from Molecules. J. Chem. Theory Comput. 2016, 12, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, A.M.; Kirrander, A. Ab initio calculation of inelastic scattering. Phys. Chem. Chem. Phys. 2017. [Google Scholar] [CrossRef] [PubMed]
- Møller, K.B.; Henriksen, N.E. Time-Resolved X-ray Diffraction: The Dynamics of the Chemical Bond. Struct. Bond. 2012, 142, 185. [Google Scholar]
- Northey, T.; Zotev, N.; Kirrander, A. Ab Initio Calculation of Molecular Diffraction. J. Chem. Theory Comput. 2014, 10, 4911. [Google Scholar] [CrossRef] [PubMed]
- Northey, T.; Carrascosa, A.M.; Schäfer, S.; Kirrander, A. Elastic X-ray scattering from state-selected molecules. J. Chem. Phys. 2016, 145, 154304. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, A.M.; Northey, T.; Kirrander, A. Imaging rotations and vibrations in polyatomic molecules with X-ray scattering. Phys. Chem. Chem. Phys. 2017, 19, 7853–7863. [Google Scholar] [CrossRef] [PubMed]
- Prince, E. (Ed.) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables; Springer International Publishing: New York, NY, USA, 2006; ISBN 978-1-4020-1900-5. [Google Scholar]
- Shorokhov, D.; Park, S.T.; Zewail, A.H. Ultrafast Electron Diffraction: Dynamical Structures on Complex Energy Landscapes. ChemPhysChem 2005, 6, 2228–2250. [Google Scholar] [CrossRef] [PubMed]
- Stefanou, M.; Saita, K.; Shalashilin, D.; Kirrander, A. Comparison of ultrafast X-ray and electron scattering—A computational study. Chem. Phys. Lett. 2017. [Google Scholar] [CrossRef]
- Thompson, A.L.; Punwong, C.; Martinez, T.J. Optimization of width parameters for quantum dynamics with frozen Gaussian basis sets. Chem. Phys. 2010, 370, 70–77. [Google Scholar] [CrossRef]
- Heller, E.J. Frozen Gaussians: A very simple semiclassical approximation. J. Chem. Phys. 1981, 75, 2923–2931. [Google Scholar] [CrossRef]
- Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Phys. 1915, 46, 809–823. [Google Scholar] [CrossRef]
- Ben-Nun, M.; Martinez, T.J. Direct Observation of Disrotatory Ring-Opening in Photoexcited Cyclobutene Using ab Initio Molecular Dynamics. J. Am. Chem. Soc. 2000, 122, 6299–6300. [Google Scholar] [CrossRef]
- Katsuki, H.; Chiba, H.; Girard, B.; Meier, C.; Ohmori, K. Visualizing Picometric Quantum Ripples of Ultrafast Wave-Packet Interference. Science 2006, 311, 1589–1592. [Google Scholar] [CrossRef] [PubMed]
- Bellshaw, D.; Horke, D.A.; Smith, A.D.; Watts, H.M.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R.T.; Kirrander, A.; et al. Ab-initio Surface Hopping and Multiphoton Ionisation Study of the Photodissociation Dynamics of CS2. Chem. Phys. Lett. 2017. [Google Scholar] [CrossRef]
Atom | H | C | N | O | F | S | Cl |
---|---|---|---|---|---|---|---|
H | 0.22 (0.17) | 0.40 (0.33) | 0.39 (0.31) | 0.35 (0.27) | 0.31 (0.21) | 0.38 (0.28) | 0.29 (0.17) |
C | 0.73 (0.65) | 0.71 (0.61) | 0.64 (0.54) | 0.57 (0.40) | 0.69 (0.54) | 0.53 (0.33) | |
N | 0.69 (0.58) | 0.62 (0.50) | 0.55 (0.38) | 0.67 (0.51) | 0.52 (0.32) | ||
O | 0.56 (0.44) | 0.50 (0.33) | 0.61 (0.45) | 0.47 (0.28) | |||
F | 0.44 (0.25) | 0.54 (0.34) | 0.41 (0.21) | ||||
S | 0.66 (0.45) | 0.50 (0.28) | |||||
Cl | 0.39 (0.17) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirrander, A.; Weber, P.M. Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction. Appl. Sci. 2017, 7, 534. https://doi.org/10.3390/app7060534
Kirrander A, Weber PM. Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction. Applied Sciences. 2017; 7(6):534. https://doi.org/10.3390/app7060534
Chicago/Turabian StyleKirrander, Adam, and Peter M. Weber. 2017. "Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction" Applied Sciences 7, no. 6: 534. https://doi.org/10.3390/app7060534
APA StyleKirrander, A., & Weber, P. M. (2017). Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction. Applied Sciences, 7(6), 534. https://doi.org/10.3390/app7060534