Next Article in Journal
Theoretical Analysis for the Flow Ripple of a Tandem Crescent Pump with Index Angles
Previous Article in Journal
On the Seismic Design of Structures with Tilting Located within a Seismic Region
Article

A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications

Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
*
Authors to whom correspondence should be addressed.
Appl. Sci. 2017, 7(11), 1149; https://doi.org/10.3390/app7111149
Received: 2 October 2017 / Revised: 2 November 2017 / Accepted: 6 November 2017 / Published: 8 November 2017
(This article belongs to the Section Materials)
A new, compact planar wideband negative index metamaterial based on a modified split ring resonator (SRR) is studied to enhance performance of ultrawideband antenna. A compact, metamaterial (MTM)-inspired microstrip antenna is presented for microwave imaging system (MIS) application. Two layers of left-handed metamaterial array (2 × 4) of the unit cell are placed on the radiating patch and the ground plane, respectively. Each left-handed metamaterial (LHM) unit cell was constructed by modifying a square split ring resonator (SRR), resulting in negative permeability and permittivity with a stable negative refractive index. The results shows that it has a significant impact on the performance of conventional patch antenna in terms of transmission co-efficient, efficiency and low loss. Compared to antenna without LHM, it is shown that the bandwidth is significantly broadened up to a few megahertz and becomes more convergent leading to the achievement of desired properties for ultra-wideband (UWB) applications leading to microwave imaging. The proposed MTM antenna structure is fabricated on commercially-available, flame-retardant material of size 26 × 22 × 1.6 mm3 with 4.6 dielectric constants, due to its low cost and convenience for making multilayer printed circuit boards (PCBs). The antenna achieves 3.1 GHz to 10.71 GHz of impedance bandwidth (−10 dB), which covers the full UWB band. The use of double-layer negative index MTM unit cells enhances UWB performance, and the improved radiation efficiency, nearly directional radiation pattern, acceptable gain, stable surface current and negative refractive index make this MTM antenna a suitable candidate for UWB applications. View Full-Text
Keywords: negative index; left handed; metamaterials; UWB; microwave imaging negative index; left handed; metamaterials; UWB; microwave imaging
Show Figures

Figure 1

MDPI and ACS Style

Mahmud, M.Z.; Islam, M.T.; Misran, N.; Singh, M.J.; Mat, K. A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications. Appl. Sci. 2017, 7, 1149. https://doi.org/10.3390/app7111149

AMA Style

Mahmud MZ, Islam MT, Misran N, Singh MJ, Mat K. A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications. Applied Sciences. 2017; 7(11):1149. https://doi.org/10.3390/app7111149

Chicago/Turabian Style

Mahmud, Md. Z., Mohammad T. Islam, Norbahiah Misran, Mandeep J. Singh, and Kamarulzaman Mat. 2017. "A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications" Applied Sciences 7, no. 11: 1149. https://doi.org/10.3390/app7111149

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop