Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ni0.2Mg2.8Al–LDH (Layered Double Hydroxide)
2.3. Preparation of Polypropylene (PP)/LDH Composites
2.4. Measurements
3. Results and Discussion
3.1. X-ray Diffraction (XRD), Element, and Morphology Analysis of LDH
3.2. XRD and Morphology Analysis of Composites
3.3. Combustion Behavior of Composites
3.4. Thermal Analysis of Composites
3.5. Mechanical Properties of PP and Its Composites
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huang, J.; Bian, Z.; Lei, S. Feasibility study of sensor aided impact acoustic sorting of plastic materials from end-of-life vehicles (ELVs). Appl. Sci. 2015, 5, 1699–1714. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Ding, P. Roles of supermolecule structure of melamine phosphomolybdate inintumescent flame retardant polypropylene composites. J. Anal. Appl. Pyrolysis 2016, 119, 139–146. [Google Scholar] [CrossRef]
- Huang, C.L.; Lou, C.W.; Liu, C.F.; Huang, C.H.; Song, X.M.; Lin, J.H. Polypropylene/graphene and polypropylene/carbon fiber conductive composites: Mechanical, crystallization and electromagnetic properties. Appl. Sci. 2015, 5, 1196–1210. [Google Scholar] [CrossRef]
- Amieva, E.J.C.; Velasco-Santos, C.; Martinez-Hernandez, A.; Rivera-Armenta, J.; Mendoza-Martinez, A.; Castano, V. Composites from chicken feathers quill and recycled polypropylene. J. Compos. Mater. 2014, 49, 275–283. [Google Scholar] [CrossRef]
- Kumar, R.; Dhaliwal, J.S.; Kapur, G.S. Mechanical properties of modified biofiller-polypropylene composites. Polym. Compos. 2014, 35, 708–714. [Google Scholar] [CrossRef]
- Saiz-Arroyo, C.; Rodríguez-Pérez, M.A.; Tirado, J.; López-Gil, A.; Saja, J.A. Structure–property relationships of medium-density polypropylene foams. Polym. Int. 2013, 62, 1324–1333. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Li, J. Effect of alkyl groups in organic part of polyoxo-metalates based ionicliquids on properties of flame retardant polypropylene. Thermochim. Acta 2016, 631, 51–58. [Google Scholar] [CrossRef]
- Rault, F.; Giraud, S.; Salaün, F.; Almeras, X. Development of a halogen free flame retardant masterbatch for polypropylene fibers. Polymers 2015, 7, 220–234. [Google Scholar] [CrossRef]
- Lomakin, S.M.; Dubnikova, I.L.; Berezina, S.M.; Zaikov, G.E. Thermal degradation and combustion of a polypropylene nanocomposite based on organically modified layered aluminosilicate. Polym. Sci. Ser. A 2006, 48, 72–84. [Google Scholar] [CrossRef]
- Han, J.; Shimizu, T.; Wataru, M.; Kim, H.; Wang, G. Polypropylene combustion in a fluidized bed combustor. Energ. Sources A 2010, 32, 1121–1129. [Google Scholar] [CrossRef]
- Tang, T.; Chen, X.; Meng, X.; Chen, H.; Ding, Y. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew. Chem. 2005, 117, 1541–1544. [Google Scholar] [CrossRef]
- Leem, S.; Lee, J.; Huh, Y. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler. J. Mech. Sci. Technol. 2008, 22, 1554–1560. [Google Scholar] [CrossRef]
- Pappalardo, S.; Russo, P.; Acierno, D.; Rabe, S.; Schartel, B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur. Polym. J. 2016, 76, 196–207. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Huang, J.; Liu, H. Synergistic effect of a novel triazine charring agent and ammoniumpolyphosphate on the flame retardant properties of halogen-freeflame retardant polypropylene composites. Thermochim. Acta 2016, 627–629, 83–90. [Google Scholar] [CrossRef]
- Song, R.; Zhang, B.; Huang, B.; Tang, T. Synergistic effect of supported nickelcatalyst with intumescent flame-retardants on flame retardancy and thermalstability of polypropylene. J. Appl. Polym. Sci. 2006, 102, 5988–5993. [Google Scholar] [CrossRef]
- Lai, X.J.; Tang, S.; Li, H.Q.; Zeng, X.G. Flame-retardant mechanism of a novelpolymeric intumescent flame retardant containing caged bicyclic phosphatefor polypropylene. Polym. Degrad. Stab. 2015, 113, 22–31. [Google Scholar] [CrossRef]
- Dittrich, B.; Wartig, K.; Mülhaupt, R.; Schartel, B. Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 2014, 6, 2875–2895. [Google Scholar] [CrossRef]
- Cui, Z.; Qu, B. Synergistic effecs of layered double hydroxide with phosphorus-nitrogen intumescent flame retardant in PP/EPDM/IFR/LDH nanocomposites. Chin. J. Polym. Sci. 2010, 28, 563–571. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; He, M.; Guo, S.; Luo, Z.; Lu, S. Effects of zinc borate and microcapsulated red phosphorus on mechanical properties and flame retardancy of polypropylene/magnesium hydroxide composites. J. Polym. Res. 2009, 16, 357–362. [Google Scholar] [CrossRef]
- Haurie, L.; Fernández, A.I.; Velasco, J.I.; Chimenos, J.M.; Cuesta, J.L.; Espiell, F. Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym. Degrad. Stabil. 2006, 91, 989–994. [Google Scholar] [CrossRef]
- Hippi, U.; Mattila, J.; Korhonen, M.; Seppälä, J. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes. Polymer 2003, 44, 1193–1201. [Google Scholar] [CrossRef]
- Du, L.; Qu, B.; Meng, Y.; Zhu, Q. Structural characterization and thermal and mechanical properties of poly (propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 2006, 66, 913–918. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Shiu, W.C. Synthesis and Characterization of Poly(ethylene terephthalate)/modified lithium-aluminum-layered double hydroxide nanocomposites prepared using in-situ polymerization. J. Chin. Chem. Soc. 2014, 61, 891–896. [Google Scholar] [CrossRef]
- Sahoo, P.; Ishihara, S.; Yamada, K.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Eisaku, N.; Sasai, R.; Labuta, J.; et al. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. ACS Appl. Mater. Interfaces 2014, 6, 18352–18359. [Google Scholar] [CrossRef] [PubMed]
- Nejati, K.; Davari, S.; Rezvani, Z.; Dadashzadeh, M. Adsorption of 4-chloro-2-methylphenoxy acetic acid (MCPA) from aqueous aolution onto Cu-Fe-NO3 layered double hydroxide nanoparticles. J. Chin. Chem. Soc. 2015, 62, 371–379. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Li, B. Thermal analysis and flame-retarded mechanism of composites composed of ethylene vinyl acetate and layered double hydroxides containing transition metals (Mn, Co, Cu, Zn). Appl. Sci. 2016, 6, 131. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, K.; Wang, B.; Gui, Z.; Hu, Y. Synthesis and characterization of CuMoO4/Zn–Al layered double hydroxide hybrids and their application as a reinforcement in polypropylene. Ind. Eng. Chem. Res. 2014, 53, 12355–12362. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Wang, J.; Huang, L.; Yan, X.; Zhang, X.; He, Q.; Xing, Z.; Guo, Z. Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double Hydroxides as Nanofiller Using Solvent Mixing Method. ACS Appl. Mater. Interfaces 2014, 6, 5094–5104. [Google Scholar] [CrossRef] [PubMed]
- Lonkar, S.P.; Therias, S.; Leroux, F.; Gardette, J.L.; Singh, R.P. Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym. Int. 2011, 60, 1688–1696. [Google Scholar] [CrossRef]
- Shabanian, M.; Basaki, N.; Khonakdar, H.A.; Jafari, S.H.; Hedayati, K.; Wagenknecht, U. Novel nanocomposites consisting of a semi-crystalline polyamide and Mg–Al LDH: Morphology, thermal properties and flame retardancy. Appl. Clay Sci. 2014, 90, 101–108. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Laio, J.R.; Naveen, B. Preparation and characterization of PET/LDH or clay nanocomposites through the microcompounding process. J. Chin. Chem. Soc. 2015, 62, 547–553. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Hu, Z.; Cao, J. Effect of nickel on the properties of composites composed of layered double hydroxides and ethylene vinyl acetate copolymer. Appl. Clay Sci. 2013, 72, 138–146. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Zhang, X.; Chen, C.; Zhang, F. Effect of intercalated anions on the performance of Ni–Al LDH nanofiller of ethylene vinyl acetate composites. Appl. Clay Sci. 2012, 56, 110–119. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Zhao, X.; Chen, C.; Cao, J. Effect of rare earth ions on the properties of composites composed of ethylene vinyl acetate copolymer and layered double hydroxides. PLoS ONE 2012, 7, e37781. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, B.; Yang, M.; Chen, C.; Liu, Y. Effect of Ni cations and microwave hydrothermal treatment on the related properties of layered double hydroxide–ethylene vinyl acetate copolymer composites. J. Colloid Interface Sci. 2011, 356, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, H.; Shi, Y.; Pan, Y.; Yang, W.; Liew, K.M.; Song, L.; Hu, Y. Fabrication of LDH nanosheets on β-FeOOH rods and applications for improving the fire safety of epoxy resin. Compos. A Appl. Sci. Manuf. 2016, 80, 259–269. [Google Scholar] [CrossRef]
- Kalali, E.N.; Juan, S.D.; Wang, X.; Nie, S.; Wang, R.; Wang, D.Y. Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites. J. Therm. Anal. Calorim. 2015, 121, 619–626. [Google Scholar] [CrossRef]
- Sandra, G.F.; Lorena, U.; Cristina, P.R.; Manuela, Z.; Corcuera, M.Á.; Eceiza, A. Flexible polyurethane foam nanocomposites with modified layered double hydroxides. Appl. Clay Sci. 2016, 123, 109–120. [Google Scholar]
- Wang, D.Y.; Das, A.; Costa, F.R.; Leuteritz, A.; Wang, Y.Z.; Wagenknecht, U.; Heinrich, G. Synthesis of organo cobalt-aluminum layered double hydroxide via a novel single-step self-assembling method and its use as flame retardant nanofiller in PP. Langmuir 2010, 26, 14162–14169. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Leuteritz, A.; Kutlu, B.; Landwehr, M.A.; Jehnichen, D.; Wagenknecht, U.; Heinrich, G. Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite. J. Alloys Compd. 2011, 509, 3497–3501. [Google Scholar] [CrossRef]
- Basile, F.; Benito, P.; Fornasari, G.; Vaccari, A. Hydrotalcite-type precursors of active catalysts for hydrogen production. Appl. Clay Sci. 2010, 48, 250–259. [Google Scholar] [CrossRef]
- Ciuffi, K.J.; Nassar, E.J.; Rocha, L.A.; Rocha, Z.N.; Nakagaki, S.; Mata, G.; Trujillano, R.; Vicente, M.A.; Korili, S.A.; Gil, A. Preparation and characterization of new Ni-aluminosilicate catalysts and their performance in the epoxidation of (Z)-cyclooctene. Appl. Catal. A Gen. 2007, 319, 153–162. [Google Scholar] [CrossRef]
- Herrero, M.; Benito, P.; Labajos, F.M.; Rives, V. Stabilization of Co2+ in layered double hydroxides (LDHs) by microwave-assisted ageing. J. Solid State Chem. 2007, 180, 873–884. [Google Scholar] [CrossRef]
- Wang, B.; Williams, G.R.; Chang, Z.; Jiang, M.; Liu, J.; Lei, X.; Sun, X. Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. ACS Appl. Mater. Interfaces 2014, 6, 16304–16311. [Google Scholar] [CrossRef] [PubMed]
- Benito, P.; Labajos, F.M.; Rocha, J.; Rives, V. Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous Mesoporous Mater. 2006, 94, 148–158. [Google Scholar] [CrossRef]
- Palmer, S.J.; Soisonard, A.; Frost, R.L. Determination of the mechanism(s) for the inclusion of arsenate, vanadate, or molybdate anions into hydrotalcites with variable cationic ratio. J. Colloid. Interface Sci. 2009, 329, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arizaga, G.G.C.; Wypych, F.; Barraza, F.C.; Lopez, O.E.C. Reversible intercalation of ammonia molecules into a layered double hydroxide structure without exchanging nitrate counter-ions. J. Solid State Chem. 2010, 183, 2324–2328. [Google Scholar] [CrossRef]
- Zhan, M.; Chen, G.; Wei, Z.; Shi, Y.; Zhang, W. Nonisothermal crystallization and morphology of poly(butylene succinate)/layered double hydrocide nanocomposites. Chin. J. Polym. Sci. 2013, 31, 187–200. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, W.; Qu, B. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer 2006, 47, 922–930. [Google Scholar] [CrossRef]
- Peacock, R.D.; Reneke, P.A.; Averill, J.D.; Bukowski, R.W.; Klote, J.H. Fire safety of passenger trains; phase II: Application of fire hazard analysis techniques. Natl. Inst. Stand. Technol. 2002, 1–185. [Google Scholar]
- Marzena, P.; Jerzy, G.; Zbignev, K. Investigation into the influence of flame retardant additives on some fire properties of polyester materials applying small-scale testing techniques. J. Civ. Eng. Manag. 2013, 19, 561–572. [Google Scholar]
- Liu, L.; Zhang, H.; Sun, L.; Kong, Q.; Zhang, J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. J. Therm. Anal. Calorim. 2016, 124, 807–814. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, X. Synergistic effects of titanium dioxide with layered double hydroxides in EVA/LDH composites. Polym. Eng. Sci. 2011, 51, 2166–2170. [Google Scholar] [CrossRef]
- Du, B.; Guo, Z.; Fang, Z. Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene. Polym. Degrad. Stabil. 2009, 94, 1979–1985. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Dong, M.; Gu, X.; Zhang, S. Effects of compound oxides on the fire performance of polypropylene composite. Ind. Eng. Chem. Res. 2014, 53, 8062–8068. [Google Scholar] [CrossRef]
- Jiang, S.D.; Bai, Z.M.; Tang, G.; Song, L.; Stec, A.A.; Hull, T.R.; Hu, Y.; Hu, W.Z. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces 2014, 6, 14076–14086. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, M.; Zhou, B. Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System. Appl. Sci. 2017, 7, 55. https://doi.org/10.3390/app7010055
Wang L, Zhang M, Zhou B. Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System. Applied Sciences. 2017; 7(1):55. https://doi.org/10.3390/app7010055
Chicago/Turabian StyleWang, Lili, Milin Zhang, and Baibin Zhou. 2017. "Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System" Applied Sciences 7, no. 1: 55. https://doi.org/10.3390/app7010055
APA StyleWang, L., Zhang, M., & Zhou, B. (2017). Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System. Applied Sciences, 7(1), 55. https://doi.org/10.3390/app7010055