Next Article in Journal
Adaptive Control of Active Magnetic Bearing against Milling Dynamics
Next Article in Special Issue
Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation
Previous Article in Journal
Dynamic Characterization of Cohesive Material Based on Wave Velocity Measurements
Previous Article in Special Issue
Enhancement Effects of the Terahertz Near-Field Microscopy
Open AccessReview

Dynamics of Carrier Transport in Nanoscale Materials: Origin of Non-Drude Behavior in the Terahertz Frequency Range

by Koichi Shimakawa 1,*,† and Safa Kasap 2,†
Joint Laboratory of Solid State Chemistry, University of Pardubice, Pardubice 530 02, Czech Republic
Department of Electrical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
Author to whom correspondence should be addressed.
The authors contributed equally to this work.
Appl. Sci. 2016, 6(2), 50;
Received: 18 November 2015 / Accepted: 27 January 2016 / Published: 14 February 2016
(This article belongs to the Special Issue Frontiers in Terahertz Science and Technology)
It is known that deviation from the Drude law for free carriers is dramatic in most electronically conductive nanomaterials. We review recent studies of the conductivity of nanoscale materials at terahertz (THz) frequencies. We suggest that among a variety of theoretical formalisms, a model of series sequence of transport involving grains and grain boundaries provides a reasonable explanation of Lorentz-type resonance (non-Drude behavior) in nanomaterials. Of particular interest is why do free carriers exhibit a Lorentz-type resonance. View Full-Text
Keywords: nanomaterial; THz spectroscopy; non-Drude transport nanomaterial; THz spectroscopy; non-Drude transport
Show Figures

Graphical abstract

MDPI and ACS Style

Shimakawa, K.; Kasap, S. Dynamics of Carrier Transport in Nanoscale Materials: Origin of Non-Drude Behavior in the Terahertz Frequency Range. Appl. Sci. 2016, 6, 50.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop