Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. NRA Measurements
Sample (Step) | 12C concentration (1015 at·cm−2) | 13C concentration (1015 at·cm−2) |
---|---|---|
Ni/Si | 21 ± 3 | - |
Ni/Si (after RTA at 900 °C) | 17 ± 3 | - |
Ni/Si (after RTA 900 °C and subsequent 13C implantation at 1.4 × 1016 at·cm−2 at 600 °C) | 20 ± 3 | 13 ± 4 |
1 Equivalent Graphene Monolayer (EGM) | 3.6 |
3.2. Morphological Investigations (SEM, AFM)
3.3. Raman Spectroscopy
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and Applications. Mater. Today 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.A.; Blighe, F.M.; Sun, Z.Y.; De, S.; MacGovern, I.T.; Holland, B.; Byrne, M.; Gunko, Y.K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.B.; Li, X.B.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route Toward Graphene-Based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, J.L.; Ley, L.; Mac Chesnay, J.L.; Ohta, T.; Reshanov, S.A.; Rohrl, J.; et al. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Obraztsov, A.N.; Obratzova, E.D.; Zolotukhin, A.A.; Tyurnina, A.V. Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness. Carbon 2007, 45, 2017–2021. [Google Scholar] [CrossRef]
- Yu, Q.; Lian, Q.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S.S. Graphene Segregated on Ni Surfaces and Transferred to Insulators. Appl. Phys. Lett. 2008, 93, 113103–113106. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Ahn, J.H.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Chae, S.J.; Gunes, F.; Kim, K.K.; Kim, E.S.; Han, G.H.; Kim, S.M.; Shin, H.J.; Yoon, S.M.; Choi, J.Y.; Park, M.H.; et al. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 2009, 21, 2328–2333. [Google Scholar] [CrossRef]
- Baraton, L.; Maurice, J.L.; Lee, C.S.; Cojocaru, C.S.; Chatelet, M.; Pribat, D. On the Mechanisms of Precipitation of Graphene on Nickel Thin Films. Europhys. Lett. 2011, 96, 46003–46009. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Cojocaru, C.S.; Moujahid, W.; Lebental, B.; Chaigneau, M.; Châtelet, M.; Le Normand, F.; Maurice, J.L. Synthesis of Conducting Transparent Few-Layer Graphene Directly on Glass at 450 °C. Nanotechnology 2012, 23, 265603–265609. [Google Scholar] [CrossRef] [Green Version]
- Mattevi, C.; Kim, H.K.; Chhowalla, M. A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324–3334. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, Y.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of Graphene from Solid Carbon Sources. Nature 2010, 468, 549–552. [Google Scholar] [CrossRef]
- Ruan, G.D.; Sun, Z.Z.; Peng, Z.W.; Tour, J.M. Growth of Graphene from Food, Insects, and Waste. ACS Nano 2011, 5, 7601–7607. [Google Scholar] [CrossRef]
- Garaj, S.; Hubbard, W.; Golovchenko, J.A. Graphene Synthesis by Ion Implantation. Appl. Phys. Lett. 2010, 97, 183103–183106. [Google Scholar] [CrossRef]
- Baraton, L.; Maurice, J.L.; Cojocaru, C.S.; Pribat, D.; He, Z.B.; Lee, Y.H.; Lee, C.S.; Gourgues-Lorenzon, A.F. Synthesis of Few-Layered Graphene by Ion Implantation of Carbon in Nickel Thin Films. Nanotechnology 2011, 22, 085601. [Google Scholar] [CrossRef] [Green Version]
- Mun, J.H.; Lim, S.K.; Cho, B.J. Local Growth of Graphene by Ion Implantation of Carbon in a Nickel Thin Film Followed by Rapid Thermal Annealing. J. Electrochem. Soc. 2012, 159, G89–G92. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.D.; Wang, Z.S.; Wang, S.X.; Wang, W.; Fu, D.J.; Liu, J.R. Nonlinear Damage Effect in Graphene Synthesis by C-Cluster Ion Implantation. App. Phys. Lett. 2012, 101, 011905. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wang, Z.S.; Zhang, R.; Wu, X.Y.; Fu, D.J.; Liu, J.R. Improvement of Graphene Quality Synthesized by Cluster Ion Implantation. Nucl. Inst. Meth. B 2013. [Google Scholar] [CrossRef]
- Gutierrez, G.; Muller, D.; Antoni, F.; Speisser, C.; Aweke, F.; Le Gall, Y.; Lee, C.S.; Cojocaru, C.S.; Le Normand, F. Multi-Layer Graphene Obtained by High Temperature Carbon Implantation into Nickel Films. Carbon 2014, 68, 337–345. [Google Scholar] [CrossRef]
- Aweke, F.; Gutierrez, G.; Muller, D.; Lee, C.S.; Maurice, J.L.; Chaigneau, M.; Chatelet, M.; Cojocaru, C.S.; Le Normand, F. Graphene films by carbon implantation into nickel films and diffusion towards surface. submitted for publication. J. Phys. Chem. C 2014. [Google Scholar]
- Stoquert, J.P.; Pêcheux, F.; Hervé, Y.; Marchal, H.; Stuck, R.; Siffert, P. VRBS: A Virtual RBS Simulation Tool for Ion Beam Analysis. Nucl. Inst. Meth. B 1998, 136, 1152–1158. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Novoselov, K.S.; Geim, A.K.; Meyer, J.C.; Roth, S.; Scardaci, V.; Mauri, F.; Casiraghi, C.; Lazzeri, M.; Piscanec, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401–187406. [Google Scholar] [CrossRef]
- Huez, M.; Quaglia, L.; Weber, G. Fonction d’Excitation de la Réaction 12C(d,p0)13C entre 400 et 1350 keV—Distributions angulaires. Nucl. Inst. Meth. B 1972, 105, 197–203. [Google Scholar] [CrossRef]
- Colaux, J.L.; Thomé, T.; Terwagne, G. Cross Section Measurements of the Reactions Induced by Deuteron Particles on 13C. Nucl. Inst. Meth. B 2007, 254, 25–29. [Google Scholar] [CrossRef]
- Hansen, M. Constitution of Binary Alloys: Metallurgy and Metallurgical Engineering, 2nd ed.; McGraw Hill Book: New York, NY, USA, 1958. [Google Scholar]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1131. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Cancado, L.G.; Jorio, A.; Ferreira, E.H.; Stavale, F.; Achete, C.A.; Capaz, R.B. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Calizo, I.; Bao, W.; Miao, F.; Lau, C.N.; Balandin, A.A. The Effect of Substrates on the Raman Spectrum of Graphene: Graphene-on-Sapphire and Graphene-on-Glass. Appl. Phys. Lett. 2007, 91, 1–4. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond like Carbon. Phys. Rev. B 2001, 64, 075414–075426. [Google Scholar] [CrossRef]
- Kalbac, M.; Fahrat, H.; Kong, J.; Janda, P.; Kavan, L.; Dresselhaus, M.S. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer 12C/13C Graphene. Nano Lett. 2011, 11, 1957–1963. [Google Scholar] [CrossRef]
- Costa, S.D.; Fantini, C.; Righi, A.; Bachmatiuk, A.; Rummeli, M.H.; Saito, R.; Pimenta, M.A. Resonant Raman Spectroscopy on Enriched 13C Carbon Nanotubes. Carbon 2011, 49, 4719–4723. [Google Scholar] [CrossRef]
- Rodriguez-Nieva, J.F.; Saito, R.; Costa, S.D.; Dresselhaus, M.S. Effect of 13C Isotope Doping on the Optical Phonon Modes in Graphene: Localization and Raman Spectroscopy. Phys. Rev. B. 2012, 85, 1–8. [Google Scholar]
- Fan, S.S.; Liu, L.; Liu, M. Monitoring the Growth of Carbon Nanotubes by Carbon Isotope Labeling. Nanotechnology 2003, 14, 1128–1135. [Google Scholar]
- Li, X.; Cai, W.; Colombo, L.; Ruoff, R.S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labelling. Nano Lett. 2009, 9, 4268–4272. [Google Scholar] [CrossRef]
- Eizenberg, M.; Blakely, J.M. Carbon Monolayer Phase Condensation on Ni(111). Surf. Sci. 1979, 82, 228–236. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gutierrez, G.; Normand, F.L.; Aweke, F.; Muller, D.; Speisser, C.; Antoni, F. Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing. Appl. Sci. 2014, 4, 180-194. https://doi.org/10.3390/app4020180
Gutierrez G, Normand FL, Aweke F, Muller D, Speisser C, Antoni F. Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing. Applied Sciences. 2014; 4(2):180-194. https://doi.org/10.3390/app4020180
Chicago/Turabian StyleGutierrez, Gaelle, François Le Normand, Fitsum Aweke, Dominique Muller, Claude Speisser, and Frédéric Antoni. 2014. "Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing" Applied Sciences 4, no. 2: 180-194. https://doi.org/10.3390/app4020180
APA StyleGutierrez, G., Normand, F. L., Aweke, F., Muller, D., Speisser, C., & Antoni, F. (2014). Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing. Applied Sciences, 4(2), 180-194. https://doi.org/10.3390/app4020180