Automatic Generation of NGSI-LD Data Models from RDF Ontologies: Developmental Studies of Children and Adolescents Use Case
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
Data Model for ACDSi Measurements
4. Results
- By determining whether the structure of the generated data models was appropriate and whether the entity properties were transferred appropriately. This step was performed on the SAREF4BLDG ontology;
- By publishing the data model and uploading the artificial data to the Context Broker, which successfully accepted it and displayed it in the test implementation upon a query.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Explanation of the Algorithm on the Example from Our Use Case
References
- National Health and Nutrition Examination Survey III, Body Measurements (Anthropometry). Westat, 1 October 1988. Available online: https://web.archive.org/web/20171113054352/https://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/anthro.pdf (accessed on 23 June 2018).
- Wijnstok, N.J.; Hoekstra, T.; Van Mechelen, W.; Kemper, H.C.; Twisk, J.W. Cohort Profile: The Amsterdam Growth and Health Longitudinal Study. Int. J. Epidemiol. 2013, 42, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Jurak, G.; Kovač, M.; Starc, G. The ACDSi 2013—The Analysis of Children’s Development in Slovenia 2013: Study protocol. Anthropol. Noteb. 2013, 19, 123–143. [Google Scholar]
- Starc, G.; Kovač, M.; Strel, J.; Bucar, M.; Golja, P.; Robič, T.; Zdešar Kotnik, K.; Grum, D.; Filipčič, T.; Sorić, M.; et al. The ACDSi 2014—A decennial study on adolescents’ somatic, motor, psycho-social development and healthy lifestyle: Study protocol. Anthropol. Noteb. 2015, 21, 107–123. [Google Scholar]
- Cole, T.J. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef]
- Jarke, M.; Otto, B.; Ram, S. Data Sovereignty and Data Space Ecosystems. Bus. Inf. Syst. Eng. 2019, 61, 549–550. [Google Scholar] [CrossRef]
- Otto, B. A federated infrastructure for European data spaces. Commun. ACM 2022, 65, 44–45. [Google Scholar] [CrossRef]
- Curry, E.; Scerri, S.; Tuikka, T. (Eds.) Data Spaces: Design, Deployment and Future Directions; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Dalmolen, S.; Bastiaansen, H.J.M.; Kollenstart, M.; Punter, M. Infrastructural sovereignty over agreement and transaction data (‘metadata’) in an open network-model for multilateral sharing of sensitive data. In Proceedings of the 40th International Conference on Information Systems, ICIS 2019, Munich, Germany, 15–18 December 2019; Association for Information Systems: Atlanta, GA, USA, 2020. Available online: https://research.utwente.nl/en/publications/infrastructural-sovereignty-over-agreement-and-transaction-data-m (accessed on 27 February 2023).
- Otto, B.; ten Hompel, M.; Wrobel, S. (Eds.) Designing Data Spaces: The Ecosystem Approach to Competitive Advantage; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- European Health Data Space—European Commission. Available online: https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en (accessed on 1 March 2025).
- International Data Spaces Association. Available online: https://internationaldataspaces.org/ (accessed on 6 June 2023).
- Steinbuss, S. IDSA Rule Book; Zenodo: Geneve, Switzerland, 2020. [Google Scholar] [CrossRef]
- Otto, B.; Steinbuss, S.; Teuscher, A.; Lohmann, S. IDS Reference Architecture Model; Zenodo: Geneve, Switzerland, 2019. [Google Scholar] [CrossRef]
- IDS RAM 4. International Data Spaces Association. 2022. Available online: https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0 (accessed on 29 March 2023).
- FIWARE. Available online: https://www.fiware.org/ (accessed on 6 June 2023).
- Alonso, Á.; Pozo, A.; Cantera, J.; de la Vega, F.; Hierro, J. Industrial Data Space Architecture Implementation Using FIWARE. Sensors 2018, 18, 2226. [Google Scholar] [CrossRef] [PubMed]
- Developers Catalogue—FIWARE. Available online: https://www.fiware.org/catalogue/ (accessed on 19 March 2023).
- Gaia-X Framework. Available online: https://docs.gaia-x.eu/framework/ (accessed on 19 March 2023).
- Big Data Value Association. Available online: https://www.bdva.eu/ (accessed on 6 June 2023).
- Data Spaces Business Alliance. Available online: https://data-spaces-business-alliance.eu/ (accessed on 6 June 2023).
- Smith, B.; Kumar, A.; Bittner, T. Basic Formal Ontology for Bioinformatics; IFOMIS Reports; Institute for Formal Ontology and Medical Information Science: Saarbrücken, Germany, 2005; Available online: https://obofoundry.org/ontology/bfo.html (accessed on 14 January 2026).
- Dublin Core. Available online: https://www.dublincore.org/resources/glossary/dublin_core/ (accessed on 19 March 2023).
- Abid, A.; Lee, J.; Le Gall, F.; Song, J. Toward Mapping an NGSI-LD Context Model on RDF Graph Approaches: A Comparison Study. Sensors 2022, 22, 4798. [Google Scholar] [CrossRef]
- Privat, G. Guidelines for Modelling with NGSI-LD (ETSI White Paper). March 2021. Available online: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp_42_NGSI_LD.pdf (accessed on 24 February 2025).
- Eitel, A.; Jung, C.; Brandstädter, R.; Hosseinzadeh, A.; Bader, S.; Kühnle, C.; Birnstill, P.; Brost, G.; Gall, M.; Bruckner, F.; et al. Usage Control in the International Data Spaces; Zenodo: Geneve, Switzerland, 2021. [Google Scholar] [CrossRef]
- Munoz-Arcentales, A.; López-Pernas, S.; Pozo, A.; Alonso, Á.; Salvachúa, J.; Huecas, G. Data Usage and Access Control in Industrial Data Spaces: Implementation Using FIWARE. Sustainability 2020, 12, 3885. [Google Scholar] [CrossRef]
- Engineering FIWARE TRUE Connector. 2023. Available online: https://github.com/Engineering-Research-and-Development/fiware-true-connector (accessed on 6 June 2023).
- Maggio, M.; Arigliano, F. Deliverable D2.5—PLATOON Reference Architecture (v2); European Union: Brussels, Belgium, 2021; Available online: https://platoon-project.eu/wp-content/uploads/2023/02/D2.5-PLATOON-Reference-Architecture-v2.pdf (accessed on 6 June 2023).
- Dave, A.; Leung, C.; Popa, R.A.; Gonzalez, J.E.; Stoica, I. Oblivious coopetitive analytics using hardware enclaves. In Proceedings of the Fifteenth European Conference on Computer Systems, Heraklion, Greece, 27–30 April 2020; ACM: New York, NY, USA, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Law, A.; Leung, C.; Poddar, R.; Popa, R.A.; Shi, C.; Sima, O.; Yu, C.; Zhang, X.; Zheng, W. Secure Collaborative Training and Inference for XGBoost. arXiv 2020. [Google Scholar] [CrossRef]
- Towards a Federation of AI Data Spaces. NL AI Coalition, November 2021. Available online: https://nlaic.com/wp-content/uploads/2022/02/Towards-a-Federation-of-AI-Data-Spaces.pdf (accessed on 24 March 2023).
- Arnon, O.; Trügler, A.; Sousa, S.; Taha, A.A.; Boch, M.; Margetis, G.; Adamakis, M. D4.2 Report on the Implementation of Deep Learning Algorithms on Distributed Frameworks. 2022. Available online: https://www.trusts-data.eu/wp-content/uploads/2022/12/D4.2_Report-on-the-implementation-of-deep-learning-algorithms-on-distributed-frameworks.pdf (accessed on 29 March 2023).
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- XML Core Working Group Public Page. Available online: https://www.w3.org/XML/Core/ (accessed on 26 February 2025).
- RDF—Semantic Web Standards. Available online: https://www.w3.org/RDF/ (accessed on 24 February 2025).
- RDFS—W3C Wiki. Available online: https://www.w3.org/wiki/RDFS (accessed on 26 February 2025).
- OWL Web Ontology Language Guide. Available online: https://www.w3.org/TR/owl-guide/ (accessed on 26 February 2025).
- SPARQL 1.1 Query Language. Available online: https://www.w3.org/TR/sparql11-query/ (accessed on 26 February 2025).
- JSON-LD 1.1. Available online: https://www.w3.org/TR/json-ld11/ (accessed on 27 February 2025).
- CKAN. Available online: https://ckan.org/ (accessed on 15 January 2024).
- Data Catalog Vocabulary (DCAT). Available online: https://www.w3.org/TR/vocab-dcat-2/ (accessed on 26 January 2024).
- CIM. ETSI. Available online: https://www.etsi.org/committee/cim (accessed on 20 March 2023).
- GAIA-X. Available online: https://gaia-x.eu/ (accessed on 6 June 2023).
- ETSI. GS CIM 006—V1.2.1—Context Information Management (CIM); NGSI-LD Information Model; ETSI: Valbonne, France, 2023; Available online: https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.02.01_60/gs_cim006v010201p.pdf (accessed on 21 November 2023).
- Understanding @Context—NGSI-LD Smart Farm Tutorials. Available online: https://ngsi-ld-tutorials.readthedocs.io/en/latest/understanding-%40context.html (accessed on 27 February 2025).
- Smart Data Models. Available online: https://smartdatamodels.org/ (accessed on 7 June 2023).
- Loebe, F.; Herre, H.; Grüninger, M. Ontological Semantics. 2015. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa-166326 (accessed on 31 October 2023).
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- ETSI. GR CIM 017—V1.1.1—Context Information Management (CIM); Feasibility of NGSI-LD for Digital Twins; ETSI: Valbonne, France, 2022. [Google Scholar]
- Martella, C.; Martella, A.; Longo, A. Enabling secure and trusted digital twin federations with data spaces. In Proceedings of the Twenty-Sixth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Houston, TX, USA, 27–30 October 2025; ACM: New York, NY, USA, 2025; pp. 418–427. [Google Scholar] [CrossRef]
- Qiang, Z.; Wang, W.; Taylor, K. Agent-OM: Leveraging LLM Agents for Ontology Matching. Proc. VLDB Endow. 2024, 18, 516–529. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Q.; Bo, X.; Ma, C.; Li, R.; Chen, X.; Zhu, J.; Dong, Z.; Wen, J.-R. A Survey on the Memory Mechanism of Large Language Model-based Agents. ACM Trans. Inf. Syst. 2025, 43, 155. [Google Scholar] [CrossRef]
- Zahid, A.; Ferraro, A.; Petrillo, A.; De Felice, F. Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing. Appl. Sci. 2025, 15, 8268. [Google Scholar] [CrossRef]
- Gonzalez-Gil, P.; Martinez, J.A.; Skarmeta, A.F. Lightweight Data-Security Ontology for IoT. Sensors 2020, 20, 801. [Google Scholar] [CrossRef]
- Bauer, M. IoT Virtualization with ML-based Information Extraction. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; IEEE: New York, NY, USA, 2021; pp. 915–920. [Google Scholar] [CrossRef]
- IoTAgent-Turtle/sdmx2jsonld at master…flopezag/IoTAgent-Turtle. Available online: https://github.com/flopezag/IoTAgent-Turtle/tree/master/sdmx2jsonld (accessed on 16 January 2024).
- Kumar, S.; Jeong, S.; Ahn, I.Y.; Jarwar, M.A. Things Data Interoperability Through Annotating oneM2M resources for NGSI-LD Entities. In Proceedings of the 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Espoo, Finland, 22–25 August 2022; IEEE: New York, NY, USA, 2022; pp. 119–124. [Google Scholar] [CrossRef]
- Lee, J.; Song, J. Maritime Metaverse: A Historical Graph-based NGSI-LD Framework for Digital Twin Integration. In Proceedings of the 2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom), Hong Kong, China, 12–14 August 2024; IEEE: New York, NY, USA, 2024; pp. 316–321. [Google Scholar] [CrossRef]
- Martín, L.; Lanza, J.; González, V.; Santana, J.R.; Sotres, P.; Sánchez, L. A Connector for Integrating NGSI-LD Data into Open Data Portals. Sensors 2024, 24, 1695. [Google Scholar] [CrossRef]
- Viola, F.; Antoniazzi, F.; Aguzzi, C.; Kamienski, C.; Roffia, L. Mapping the NGSI-LD Context Model on Top of a SPARQL Event Processing Architecture: Implementation Guidelines. In Proceedings of the 24th Conference of Open Innovations Association FRUCT, Moscow, Russia, 8–12 April 2019. [Google Scholar]
- Musen, M.A. The Protégé Project: A Look Back and a Look Forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef]
- Pysmartdatamodels—PyPI. Available online: https://pypi.org/project/pysmartdatamodels/ (accessed on 1 November 2023).
- GitHub—FIWARE/context.Orion-LD. Available online: https://github.com/fiware/context.orion-ld (accessed on 26 August 2023).
- Drobnič, F.; Starc, G.; Jurak, G.; Kos, A.; Pustišek, M. Explained Learning and Hyperparameter Optimization of Ensemble Estimator on the Bio-Psycho-Social Features of Children and Adolescents. Electronics 2023, 12, 4097. [Google Scholar] [CrossRef]
- Council of Europe, Committee of Ministers. Recommendation No. R (87) 9. Council of Europe, 19 May 1987. Available online: https://rm.coe.int/09000016804f9d3d (accessed on 5 January 2023).
- Jurak, G.; Leskošek, B.; Kovač, M.; Sorić, M.; Kramaršič, J.; Sember, V.; Đurić, S.; Meh, K.; Morrison, S.A.; Strel, J.; et al. SLOfit surveillance system of somatic and motor development of children and adolescents: Upgrading the Slovenian Sports Educational Chart. AUC KINANTHROPOLOGICA 2020, 56, 28–40. [Google Scholar] [CrossRef]
- SAREF: The Smart Applications REFerence Ontology. Available online: https://saref.etsi.org/core/v3.1.1/ (accessed on 26 January 2024).
- Rdflib Package—Rdflib 7.1.3 Documentation. Available online: https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html#rdflib.graph.Graph.triples (accessed on 27 February 2025).
- UNCEFACT-Rec20, UNECE. Available online: https://unece.org/trade/documents/2021/06/uncefact-rec20 (accessed on 2 February 2024).
- Keil, J.M.; Schindler, S. Comparison and evaluation of ontologies for units of measurement. Semant. Web 2018, 10, 33–51. [Google Scholar] [CrossRef]




| Feature | Class | Data Type | NGSI-LD Data Type | Measurement Unit |
|---|---|---|---|---|
| 20-sDrummingTest | EUROFIT | xsd:decimal | number | one |
| 20-sSit-ups | EUROFIT | xsd:decimal | number | one |
| 30-mDash | EUROFIT | xsd:decimal | number | s |
| 60-mDash | SLOfit | xsd:decimal | number | s |
| 60-sSit-ups | SLOfit | xsd:decimal | number | one |
| 600-mRun | SLOfit | xsd:decimal | number | s |
| armPlateTapping | SLOfit | xsd:decimal | number | one |
| backwardsObstacleCourse | SLOfit | xsd:decimal | number | s |
| bentArm-hang | SLOfit | xsd:decimal | number | s |
| flamingoBalanceTest | EUROFIT | xsd:decimal | number | s |
| handgrip | EUROFIT | xsd:decimal | number | kg |
| shoulderCircumductionTest | EUROFIT | xsd:decimal | number | cm |
| sitAndReach | EUROFIT | xsd:decimal | number | cm |
| standAndReach | SLOfit | xsd:decimal | number | cm |
| standingLongJump | EUROFIT, SLOfit | xsd:decimal | number | cm |
| vO2Max | EUROFIT | xsd:decimal | number | mL/kg/min |
| personIdentifier | Person | xsd:string | string | - |
| sex | Person | xsd:string | string | - |
| age | Person | xsd:integer | number | years |
| height | Anthropometry | xsd:decimal | number | cm |
| weight | Anthropometry | xsd:decimal | number | kg |
| tricepsSkinfold | Anthropometry | xsd:decimal | number | mm |
| bodyMassIndex | Anthropometry | xsd:decimal | number | kg/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Drobnič, F.; Starc, G.; Jurak, G.; Kos, A.; Pustišek, M. Automatic Generation of NGSI-LD Data Models from RDF Ontologies: Developmental Studies of Children and Adolescents Use Case. Appl. Sci. 2026, 16, 992. https://doi.org/10.3390/app16020992
Drobnič F, Starc G, Jurak G, Kos A, Pustišek M. Automatic Generation of NGSI-LD Data Models from RDF Ontologies: Developmental Studies of Children and Adolescents Use Case. Applied Sciences. 2026; 16(2):992. https://doi.org/10.3390/app16020992
Chicago/Turabian StyleDrobnič, Franc, Gregor Starc, Gregor Jurak, Andrej Kos, and Matevž Pustišek. 2026. "Automatic Generation of NGSI-LD Data Models from RDF Ontologies: Developmental Studies of Children and Adolescents Use Case" Applied Sciences 16, no. 2: 992. https://doi.org/10.3390/app16020992
APA StyleDrobnič, F., Starc, G., Jurak, G., Kos, A., & Pustišek, M. (2026). Automatic Generation of NGSI-LD Data Models from RDF Ontologies: Developmental Studies of Children and Adolescents Use Case. Applied Sciences, 16(2), 992. https://doi.org/10.3390/app16020992

