Role of Solvent and Citric Acid-Mediated Solvent Acidification in Enhancing the Recovery of Phenolics, Flavonoids, and Anthocyanins from Apple Peels
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Apple Peel Sample
2.2. Reagents and Standard Compounds
2.3. Determination of Total Phenolic Compounds
2.4. Determination of Total Flavonoid Content
2.5. Determination of Total Anthocyanin Content
2.6. Determination of Phenolic Compounds by HPLC
2.7. Statistical Analysis
3. Results
3.1. Effect of Extraction Solvent Acidification on Total Phenolic Compounds, Flavonoids, and Anthocyanins
3.2. Effect of Extraction Solvent Acidification on Phenolic Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 5-CQA | 5-O-caffeoylquinic acid |
| C3G | cyanidin-3-O-glucoside |
| CE | catechin equivalents |
| GAE | gallic acid equivalents |
| GRAS | generally recognized as safe |
| TAC | total anthocyanins |
| TFC | total flavonoid content |
| TPC | total phenolic compounds |
References
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Abebe, G.; Emenike, C.; Martynenko, A. Sustainable utilization of apple pomace: Technological aspects and emerging applications. Food Res. Int. 2025, 220, 117149. [Google Scholar] [CrossRef] [PubMed]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef]
- Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawiślak, K. Technology for Apple Pomace Utilization within a Sustainable Development Policy Framework. Sustainability 2022, 14, 5470. [Google Scholar] [CrossRef]
- Kauser, S.; Murtaza, M.A.; Hussain, A.; Imran, M.; Kabir, K.; Najam, A.; An, Q.U.; Akram, S.; Fatima, H.; Batool, S.A.; et al. Apple pomace, a bioresource of functional and nutritional components with potential of utilization in different food formulations: A review. Food Chem. Adv. 2024, 4, 100598. [Google Scholar] [CrossRef]
- Pascoalino, L.A.; Barros, L.; Barreira, J.C.M.; Beatriz, M.; Reis, F.S. Closing the loop: Exploring apple pomace as a source of bioactive compounds in the framework of circular economy. Sustain. Food Technol. 2024, 3, 81–95. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Wondra, A.G. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- El Mannoubi, I. Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 176–184. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Modelling and Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Quinoa by Response Surface Methodology. Molecules 2021, 26, 3616. [Google Scholar] [CrossRef]
- Xiang, Z.; Liu, L.; Xu, Z.; Kong, Q.; Feng, S.; Chen, T.; Zhou, L.; Yang, H.; Xiao, Y.; Ding, C. Solvent Effects on the Phenolic Compounds and Antioxidant Activity Associated with Camellia polyodonta Flower Extracts. ACS Omega 2024, 9, 27192–27203. [Google Scholar] [CrossRef]
- Arya, O.P.; Bhatt, I.D.; Mohanty, K. Effect of different extraction solvents on bioactive phenolics and antioxidant potential of Illicium griffithii fruit. J. Appl. Res. Med. Aromat. Plants 2024, 40, 100547. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielinska, M.; Bulkowska, K.; Witonska, I. Recovery of polyphenols from distillery stillage by microwave-assisted, ultrasound-assisted and conventional solid–liquid extraction. Sci. Rep. 2022, 12, 3232. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.d.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Mante, O.D.; Thompson, S.J.; Mustpha, S.; Dayton, D.C. A Selective Extraction Method for Recovery of Monofunctional Methoxyphenols from Biomass Pyrolysis Liquids. Green Chem. Manuscr. 2019, 21, 2257–2265. [Google Scholar] [CrossRef]
- Amna, D.; Islam, M.R.; Farooq, A.; Munawar, I.; Zakariya, B.; Campus, F. Unveiling the Functional Implications and Complex Interplay Between Bound Phenolic Compounds and Phenolics in Food: A Comprehensive Review. Agrobiol. Rec. 2023, 13, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.H.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef]
- Książek, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2024, 29, 22. [Google Scholar] [CrossRef]
- Lorenzo, F.; Frisina, M.; Bonacci, S.; Nardi, M.; Oliverio, M.; Procopio, A. Combining Carboxylic-Acid-Based Deep Eutectic Solvents and High Temperatures Enhances Phenolic Acid Extraction from Grape Pomace. Antioxidants 2025, 14, 643. [Google Scholar] [CrossRef]
- Costa, J.M.; Forster-Carneiro, T. Valorization of apple pomace by-products from the juice processing industry using pressurized liquid technology. J. Environ. Chem. Eng. 2023, 11, 110907. [Google Scholar] [CrossRef]
- Bredun, M.A.; Prestes, A.A.; Panceri, C.P.; Prudêncio, E.S.; Burin, V.M. Bioactive compounds recovery by freeze concentration process from winemaking by-product. Food Res. Int. 2023, 173, 113220. [Google Scholar] [CrossRef]
- Capaldi, G.; Aimone, C.; Calcio Gaudino, E.; Radošević, K.; Bagović, M.; Grillo, G.; Cravotto, G. The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction. Int. J. Mol. Sci. 2024, 25, 11032. [Google Scholar] [CrossRef]
- Orozco-Flores, L.A.; Salas, E.; Rocha-Gutiérrez, B.; Peralta-Pérez, M.D.R.; González-Sánchez, G.; Ballinas-Casarrubias, L. Determination of Polyphenolic Profile of Apple Pomace (Malus domestica Golden Delicious Variety) by HPLC-MS. ACS Omega 2024, 9, 196–203. [Google Scholar] [CrossRef]
- European Commission—CIRCABC Apples. Available online: https://circabc.europa.eu/ui/group/a6df5bd5-efdf-40cc-a42d-8292eedd0201/library/f805b268-4637-4370-8ba8-66a199735cda/details?open=true (accessed on 19 December 2025).
- Melini, V.; Melini, F.; Salvati, A.; Luziatelli, F.; Ruzzi, M. Effect of Artichoke Outer Bract Powder Addition on the Nutritional Profile of Gluten-Free Rusks. Foods 2025, 14, 2395. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F.; Comendador, F.J. Response Surface Methodology as an Experimental Strategy for Ultrasound-Assisted Extraction of Phenolic Compounds from Artichoke Heads. Antioxidants 2023, 12, 1360. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants 2023, 12, 203. [Google Scholar] [CrossRef]
- Mnich, E.; Bjarnholt, N.; Eudes, A.; Harholt, J.; Holland, C.; Jørgensen, B.; Larsen, F.H.; Liu, M.; Manat, R.; Meyer, A.S.; et al. Phenolic cross-links: Building and de-constructing the plant cell wall. Nat. Prod. Rep. 2020, 37, 919–961. [Google Scholar] [CrossRef]
- Martins, C.C.; Kahmann, A.; Anzanello, M.J.; Rodrigues, R.C.; Rodrigues, E.; Mercali, G.D. Acid hydrolysis conditions do affect the non-extractable phenolic compounds composition from grape peel and seed. Food Res. Int. 2023, 174, 113636. [Google Scholar] [CrossRef]
- Serea, D.; Constantin, O.E.; Horincar, G.; Stănciuc, N.; Aprodu, I.; Bahrim, G.E.; Râpeanu, G. Optimization of Extraction Parameters of Anthocyanin Compounds and Antioxidant Properties from Red Grape (Băbească neagră) Peels. Inventions 2023, 8, 59. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. The influence of chemical structure and the presence of ascorbic acid on anthocyanins stability and spectral properties in purified model systems. Foods 2019, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.; Lu, Y.; Wu, Q.; Liu, Y.; Liu, Y.; Kumar, S.; Zhu, G.; Zhu, Z. Pre-Treatment, Extraction Solvent, and Color Stability of Anthocyanins from Purple Sweetpotato. Foods 2024, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, F.; Wang, Z.; Feng, Y.; Han, Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023, 12, 3969. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Aguilar, F.; Ortega-Regules, A.E.; Ramírez-Rodrigues, M.M. Influence of time-temperature in the antioxidant activity, anthocyanin and polyphenols profile, and color of Ardisia compressa K. extracts, with the addition of sucrose or citric acid. Food Chem. 2024, 440, 138181. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Sun, J.; Qiu, S.; Chu, B.; Fang, R.; Li, L.; Gong, J.; Zheng, F. Degradation kinetics and isomerization of 5-O-caffeoylquinic acid under ultrasound: Influence of epigallocatechin gallate and vitamin C. Food Chem. X 2021, 12, 100147. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Bayram, I.; Lante, A.; Decker, E.A. Acid-hydrolyzed phenolic extract of parsley (Petroselinum crispum L.) leaves inhibits lipid oxidation in soybean oil-in-water emulsions. Food Res. Int. 2024, 187, 114452. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Bernacik, K.; Typek, R. Rutin Transformation During Its Analysis Involving Extraction Process for Sample Preparation. Food Anal. Methods 2016, 9, 213–224. [Google Scholar] [CrossRef]


| Sample ID | TPC (mg GAE/100 g dm) | TFC (mg CE/100 g dm) | TAC (mg C3GE/100 g dm) |
|---|---|---|---|
| MeOH_SS-0 | 2072.60 ± 124.83 c,C | 110.92 ± 9.34 ab,CD | 48.17 ± 5.46 d,F |
| MeOH_SS-0.1 | 2424.52 ± 122.25 b,B | 118.59 ± 3.21 a,C | 167.04 ± 4.78 c,E |
| MeOH_SS-0.5 | 2658.32 ± 99.02 a,A | 112.73 ± 9.10 ab,CD | 341.90 ± 33.60 a,BC |
| MeOH_SS-1 | 2131.55 ± 99.97 c,C | 94.43 ± 0.44 b,D | 261.43 ± 24.01 b,D |
| EtOH_SS-0 | 2288.43 ± 113.63 β,BC | 157.13 ± 5.09 α,AB | 48.15 ± 3.06 γ,F |
| EtOH_SS-0.1 | 2878.28 ± 180.06 α,A | 165.18 ± 3.99 α,A | 319.18 ± 9.45 β,C |
| EtOH_SS-0.5 | 2745.25 ± 27.14 α,A | 159.09 ± 1.15 α,AB | 397.20 ± 53.20 αβ,AB |
| EtOH_SS-1 | 2916.10 ± 69.30 α,A | 140.99 ± 5.48 β,B | 412.40 ± 53.00 α,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Melini, F.; Fasano, S.; Melini, V. Role of Solvent and Citric Acid-Mediated Solvent Acidification in Enhancing the Recovery of Phenolics, Flavonoids, and Anthocyanins from Apple Peels. Appl. Sci. 2026, 16, 671. https://doi.org/10.3390/app16020671
Melini F, Fasano S, Melini V. Role of Solvent and Citric Acid-Mediated Solvent Acidification in Enhancing the Recovery of Phenolics, Flavonoids, and Anthocyanins from Apple Peels. Applied Sciences. 2026; 16(2):671. https://doi.org/10.3390/app16020671
Chicago/Turabian StyleMelini, Francesca, Sara Fasano, and Valentina Melini. 2026. "Role of Solvent and Citric Acid-Mediated Solvent Acidification in Enhancing the Recovery of Phenolics, Flavonoids, and Anthocyanins from Apple Peels" Applied Sciences 16, no. 2: 671. https://doi.org/10.3390/app16020671
APA StyleMelini, F., Fasano, S., & Melini, V. (2026). Role of Solvent and Citric Acid-Mediated Solvent Acidification in Enhancing the Recovery of Phenolics, Flavonoids, and Anthocyanins from Apple Peels. Applied Sciences, 16(2), 671. https://doi.org/10.3390/app16020671

