A Fatigue-Crack Growth Prediction Model Considering Stress Ratio Effects Based on Material Properties
Abstract
1. Introduction
2. Mechanism-Guided Semi-Analytical Model for R-Effect at −1 ≤ R < 1
2.1. Nonlinear Mean-Stress Correction Models
2.2. Derivation of the Equivalent Driving Force Model
- (1)
- The reference Paris parameters C0 and m0 are determined by fitting the test FCG rate data obtained at R = 0.
- (2)
- Based on the approximately parallel nature of the FCG rate curves at different values of R, the Paris exponent is assumed to be R-independent, i.e., mR = m0.
- (3)
- The function f(R) is evaluated using σu, and σ−1, and the Paris coefficient CR corresponding to different R values is calculated by the relationship C0 = CR·[f(R)]mR.
- (4)
- With the parameters CR and mR determined, the FCG rate curves at arbitrary R values (−1 ≤ R < 1) can be directly predicted.
3. Model Validation Based on Experimental Data
3.1. Validation of the Model with FCG Test on Q345qD Steel
3.1.1. Experimental Methodology
3.1.2. Results and Verification
3.2. Verification of the Model Using FCG Data in the Literature
4. Discussion
5. Conclusions
- (1)
- The linear Goodman model is modified to account for the nonlinear sensitivity of the fatigue limit to mean stress. For R ≥ 0, particularly at high stress ratios (R ≥ 0.5), the fatigue limit becomes weakly sensitive to further increases in mean stress, and the correction function φ(R) = 1 − R2 is adopted to describe this behavior. In contrast, for R < 0, the fatigue limit exhibits a much stronger sensitivity to mean stress, with a more rapid reduction as mean stress increases. Accordingly, following the FKM guideline, the correction function φ(R) = 3(1 − R2) is employed to account for this enhanced sensitivity.
- (2)
- The modified nonlinear mean-stress correction model is used to derive an equivalent driving force model for FCG. The model transforms the SIF range at any R (ΔKR) into the reference state (ΔK0) at R = 0, without additional fitting parameters, relying only on basic material properties such as fatigue limit and tensile strength. Its simplicity and reliance on intrinsic parameters render it both accurate and practical for engineering applications.
- (3)
- Validation using FCG test results of Q345qD steel and 23 datasets from seven representative alloys demonstrates that the predicted FCG curves by Equation (28) are in good agreement with experimental data and maintain high prediction accuracy at −1 ≤ R <1. Compared with classical models, the proposed model consistently exhibits superior predictive performance, achieving a goodness of fit of up to 0.98. These results confirm its effectiveness and practicality as a reliable tool for FCG analysis and residual life assessment in engineering structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
| Abbreviations | |
| a | Crack length |
| C, m | Paris parameters |
| C0, m0 | Paris parameters at R = 0 |
| CR, mR | Paris parameters at any stress ratio R |
| da/dN | Fatigue-crack growth rate |
| (da/dN)R | Fatigue-crack growth rate at any stress ratio |
| f(R) | Correction function for stress-intensity factor range |
| Kmax | Maximum stress-intensity factor |
| Kmin | Minimum stress-intensity factor |
| KIC | Fracture toughness |
| R | Stress ratio |
| Y | Geometry factor |
| ΔK | Stress-intensity factor range |
| ΔK0 | Stress-intensity factor range at R = 0 |
| ΔKeff | Effective stress-intensity factor range |
| ΔKR | Stress-intensity factor range at any stress ratio R |
| ΔKth | Threshold stress-intensity factor range |
| ΔK+ | Positive range of stress-intensity factor |
| ΔσR | Stress range |
| σa | Stress amplitude |
| σa0 | Stress amplitude at R = 0 |
| σaR | Stress amplitude at any stress ratio R |
| σf′ | Fatigue strength coefficient |
| σm | Mean stress |
| σm0 | Mean stress at R = 0 |
| σmR | Mean stress at any stress ratio R |
| σmax | Maximum stress |
| σmin | Minimum stress |
| σu | Tensile strength |
| σy | Yield strength |
| σ−1 | Fatigue limit |
| Nomenclature | |
| CC | Crack closure |
| FCG | Fatigue-crack growth |
| SIF | Stress-intensity factor |
Appendix A
| Author | Model | Data-Fitting Parameter(s) 1 |
|---|---|---|
| Walker [22] | Paris parameters (C and m) and γ | |
| Kujawski [10] | Paris parameters (C and m) | |
| Kujawski [11] | Paris parameters (C and m) and α | |
| Huang [12] | Paris parameters (C and m), β and β1 | |
| Noroozi [41] | Paris parameters (C and m) and p | |
| Rahbar [13] | Paris parameters (C0 and m0) and α | |
| Li [42] | Paris parameters (C0, m0 and m), η and n | |
| Zhan [14] | Paris parameters (C0 and m0) and α | |
| NASGRO [17] | Paris parameters (C and m), p and q | |
| Zhou [43] | Paris parameters (C and m), α′ and q | |
| Goodman [18] | Paris parameters (C0 and m0) |
References
- Mourad, A.H.I.; Sajith, S.; Shitole, S.; Almomani, A.; Khan, S.H.; Elsheikh, A.; Alzo’UBi, A.K. Fatigue life and crack growth prediction of metallic structures: A review. Structures 2025, 76, 109031. [Google Scholar] [CrossRef]
- Gairola, S.; Jayaganthan, R.; Singh, R.K.; Kumar, N.; Ajay, J. An investigation on damage tolerant design parameters of additively manufactured Al 2024: Fatigue crack growth rate and fracture toughness. Mater. Today Commun. 2024, 38, 108480. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic. Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Lao, W.; Xu, Y.L.; Ye, Y.; Cui, C.; Zhang, Q. Digital twin-based probabilistic prediction of microcrack initiation and propagation in the weld zone of orthotropic steel deck. Int. J. Fatigue 2024, 186, 108407. [Google Scholar] [CrossRef]
- Tamboura, S.; Laribi, M.A.; Fitoussi, J.; Shirinbayan, M.; Bi, R.T.; Tcharkhtchi, A.; Ben Dali, H. Damage and fatigue life prediction of short fiber reinforced composites submitted to variable temperature loading: Application to Sheet Molding Compound composites. Int. J. Fatigue 2020, 138, 105676. [Google Scholar] [CrossRef]
- Li, H.F.; Yang, S.P.; Zhang, P.; Liu, Y.; Wang, B.; Zhang, Z. Material-independent stress ratio effect on the fatigue crack growth behavior. Eng. Fract. Mech. 2022, 259, 108116. [Google Scholar] [CrossRef]
- Laribi, M.A.; Tamboura, S.; Fitoussi, J.; Shirinbayan, M.; Bi, R.; Tcharkhtchi, A.; Ben Dali, H. Microstructure dependent fatigue life prediction for short fibers reinforced composites: Application to sheet molding compounds. Int. J. Fatigue 2020, 138, 105731. [Google Scholar] [CrossRef]
- Romaniv, O.N.; Nikiforchin, G.N.; Andrusiv, B.N. Effect of crack closure and evaluation of the cyclic crack resistance of constructional alloys. Sov. Mater. Sci. 1983, 19, 212–225. [Google Scholar] [CrossRef]
- Elber, W. The significance of fatigue crack closure. In Damage Tolerance in Aircraft Structures; ASTM STP 486; ASTM: Lutherville-Timonium, MD, USA, 1971; pp. 230–242. [Google Scholar]
- Kujawski, D. A new (ΔK+ Kmax)0.5 driving force parameter for crack growth in aluminum alloys. Int. J. Fatigue 2001, 23, 733–740. [Google Scholar] [CrossRef]
- Kujawski, D. A fatigue crack driving force parameter with load ratio effects. Int. J. Fatigue 2001, 23, 239–246. [Google Scholar] [CrossRef]
- Huang, X.; Moan, T. Improved modeling of the effect of R-ratio on crack growth rate. Int. J. Fatigue 2007, 29, 591–602. [Google Scholar] [CrossRef]
- Kwofie, S.; Rahbar, N. An equivalent driving force model for crack growth prediction under different stress ratios. Int. J. Fatigue 2011, 33, 1199–1204. [Google Scholar] [CrossRef]
- Zhan, W.; Lu, N.; Zhang, C. A new approximate model for the R-ratio effect on fatigue crack growth rate. Eng. Fract. Mech. 2014, 119, 85–96. [Google Scholar] [CrossRef]
- Dávila, C.G. From S-N to the Paris law with a new mixed-mode cohesive fatigue model for delamination in composites. Theor. Appl. Fract. Mech. 2020, 106, 102499. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C. Notch size influence on fatigue limit of steels pertinent to grain size. Int. J. Fatigue 2022, 156, 106642. [Google Scholar] [CrossRef]
- Mettu, S.R.; Shivakumar, V.; Beek, J.M.; Yeh, F.; Williams, L.C.; Forman, R.G.; McMahon, J.J.; Newman, J.C., Jr. NASGRO 3.0: A software for analyzing aging aircraft. In The Second Joint NASA/FAA/DoD Conference on Aging Aircraft; Langley Research Center: Williamsburg, VA, USA, 1999. Available online: https://ntrs.nasa.gov/ (accessed on 2 January 2026).
- Zhang, C.; Wu, P.; Mu, S.; Dong, Y. Stress ratio influence on Paris parameter and fatigue driving force pertinent to material properties. Int. J. Fatigue 2024, 185, 108368. [Google Scholar] [CrossRef]
- Ince, A. A generalized mean stress correction model based on distortional strain energy. Int. J. Fatigue 2017, 104, 273–282. [Google Scholar] [CrossRef]
- Liu, Y.; Paggi, M.; Gong, B.; Deng, C. A unified mean stress correction model for fatigue thresholds prediction of metals. Eng. Fract. Mech. 2020, 223, 106787. [Google Scholar] [CrossRef]
- Gao, F.; Xie, L.; Liu, T.; Song, B.; Pang, S.; Wang, X. An equivalent strain energy density model for fatigue life prediction under large compressive mean stress. Int. J. Fatigue 2023, 177, 107899. [Google Scholar] [CrossRef]
- Niesłony, A.; Böhm, M. Mean stress effect correction using constant stress ratio S–N curves. Int. J. Fatigue 2013, 52, 49–56. [Google Scholar] [CrossRef]
- Burger, R.; Lee, Y.L. Assessment of the mean-stress sensitivity factor method in stress-life fatigue predictions. J. Test. Eval. 2013, 41, 200–206. [Google Scholar] [CrossRef]
- Dowling, N.E.; Kampe, S.L.; Kral, M.V. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue; Pearson Education (US): Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Dowling, N.E.; Calhoun, C.A.; Arcari, A. Mean stress effects in stress-life fatigue and the Walker equation. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 163–179. [Google Scholar] [CrossRef]
- Qi, J.; Deng, C.; Liu, Y.; Gong, B.; Wang, D. A short and long crack growth model with mean stress correction based on cyclic resistance curve. Theor. Appl. Fract. Mech. 2023, 124, 103785. [Google Scholar] [CrossRef]
- ASTM E647-15; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM E8/E8M-13a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- GB 50017-2017; Standard for Design of Steel Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China; China Planning Press: Beijing, China, 2017.
- Ke, L.; Li, Y.; Li, C.; Feng, Z.; Zhu, F.; Liang, L.; Mei, S. Experimental and probabilistic study of fatigue crack growth behavior of steel Q345qC under different stress ratios. Constr. Build. Mater. 2023, 393, 131986. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, Z.; Jiang, S.; He, J. An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation. Materials 2016, 9, 483. [Google Scholar] [CrossRef] [PubMed]
- Aluminum Association. Aluminum Standards and Data; Aluminum Association: Washington, DC, USA, 2009. [Google Scholar]
- Pang, C.M.; Ho, J.H.S.J. Crack growth and closure behavior of short fatigue cracks. Eng. Fract. Mech. 1994, 47, 327–343. [Google Scholar] [CrossRef]
- Noroozi, A.H.; Glinka, G.; Lambert, S. A two parameter driving force for fatigue crack growth analysis. Int. J. Fatigue 2005, 27, 1277–1296. [Google Scholar] [CrossRef]
- François, D.; Pineau, A.; Zaoui, A. Mechanical Behavior of Materials; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Tanaka, T.; Jono, M.; Komai, K.; Tanaka, T.; Jono, M.; Komai, K. Current Research on Fatigue Cracks (Current Japanese Materials Research, Vol. 1). J. Press. Vessel Technol. 1988, 110, 464–465. [Google Scholar] [CrossRef]
- Chang, T.; Guo, W. Effects of strain hardening and stress state on fatigue crack closure. Int. J. Fatigue 1999, 21, 881–888. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.; SchöNbauer, B. Near-threshold fatigue crack propagation and internal cracks in steel. Procedia Eng. 2010, 2, 1547–1555. [Google Scholar] [CrossRef]
- Ding, J.; Hall, R.; Byrne, J. Effects of stress ratio and temperature on fatigue growth in a Ti–6Al–4V alloy. Int. J. Fatigue 2005, 27, 1551–1558. [Google Scholar] [CrossRef]
- Yang, X.; Wu, P.; Dong, Z. Notch fatigue life prediction in metals: A critical distance model with microstructure and geometry effects. Theor. Appl. Fract. Mech. 2026, 141, 105213. [Google Scholar] [CrossRef]
- Noroozi, A.H.; Glinka, G.; Lambert, S. Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains. Eng. Fract. Mech. 2008, 75, 188–206. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Gong, D. The interrelation of the parameters in the Paris equation of fatigue crack growth. Eng. Fract. Mech. 2012, 96, 500–509. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, B.; Xiao, S.; Yang, G.; Zhu, T. Crack Growth Rate Model Derived from Domain Knowledge-Guided Symbolic Regression. Chin. J. Mech. Eng. 2023, 36, 40. [Google Scholar] [CrossRef]
















| Steel | C | Si | Mn | P | S | Ni | Ti | Nb |
|---|---|---|---|---|---|---|---|---|
| Q345qD | 0.12 | 0.29 | 1.33 | 0.013 | 0.004 | 0.23 | 0.002 | 0.002 |
| Materials | Unified Name (e.g., UNS) | σu (MPa) | σ−1 (MPa) |
|---|---|---|---|
| Al-alloy 7075-T6 [31] | AA 7075-T6 | 570 [31] | 160 [31,32] |
| Al-alloy 2024-T351 [33] | AA 2024-T351 | 460 [33] | 140 [32,33] |
| 4340 steel [34] | UNS G43400 | 1280 [34] | 540 [34,35] |
| JIS SM50B steel [36] | UNS K11620 | 490 [36] | 147 [36] |
| 300M steel [37] | UNS K44220 | 1770 [37] | 522 [37] |
| X12Cr13 steel [38] | UNS S 41000 | 750 [38] | 300 [38] |
| Ti-6Al-4V [39] | UNS R56400 | 980 [39] | 514 [39] |
| Materials | R | C0 | m0 | CR (Equation (28)) | Test Data Within | Goodness of Fit (R2) | ||
|---|---|---|---|---|---|---|---|---|
| 2× Scatter Band | Equation (28) | Huang [12] | SWT [22] | |||||
| Q345qD steel | 0.1 | 2 × 10−9 | 3.2880 | 2.37 × 10−9 | Yes | 0.992 | 0.990 | 0.994 |
| 0.3 | 2 × 10−9 | 3.2880 | 3.23 × 10−9 | Yes | 0.984 | 0.970 | 0.971 | |
| 0.5 | 2 × 10−9 | 3.2880 | 4.50 × 10−9 | Yes | 0.956 | 0.622 | 0.624 | |
| 0.7 | 2 × 10−9 | 3.2880 | 6.46 × 10−9 | Yes | 0.801 | −0.059 | −1.191 | |
| Al-alloy 7075-T6 | 0.5 | 2 × 10−7 | 3.4269 | 4.58 × 10−7 | Yes | 0.987 | 0.523 | 0.914 |
| 0.75 | 2 × 10−7 | 3.4269 | 6.56 × 10−7 | Yes | 0.981 | −0.004 | 0.539 | |
| Al-alloy 2024-T351 | −1 | 6 × 10−9 | 4.1164 | 4.27 × 10−10 | Yes | 0.946 | 0.930 | 0.573 |
| −0.5 | 6 × 10−9 | 4.1164 | 1.04 × 10−9 | Yes | 0.910 | 0.936 | 0.753 | |
| 4340 steel | −1 | 4 × 10−9 | 2.7659 | 4.16 × 10−10 | Yes | 0.911 | 0.852 | 0.024 |
| 0.7 | 4 × 10−9 | 2.7659 | 1.37 × 10−8 | Yes | 0.812 | 0.907 | 0.986 | |
| JIS SM50B steel | −1 | 1 × 10−13 | 4.0844 | 7.48 × 10−15 | Yes | 0.941 | 0.812 | −3.65 |
| −0.3 | 1 × 10−13 | 4.0844 | 3.26 × 10−14 | Yes | 0.942 | 0.775 | −0.06 | |
| 0.5 | 1 × 10−13 | 4.0844 | 2.82 × 10−13 | Yes | 0.863 | −2.08 | 0.157 | |
| 0.7 | 1 × 10−13 | 4.0844 | 4.44 × 10−13 | Yes | 0.628 | −4.95 | −1.93 | |
| 300M steel | 0.5 | 2 × 10−8 | 2.7016 | 3.94 × 10−8 | Yes | 0.972 | 0.757 | 0.757 |
| 0.7 | 2 × 10−8 | 2.7016 | 5.26 × 10−8 | Yes | 0.960 | 0.453 | −0.209 | |
| X12Cr13 steel | 0.5 | 4 × 10−15 | 5.0709 | 1.88 × 10−14 | Yes | 0.742 | 0.703 | 0.703 |
| 0.8 | 4 × 10−15 | 5.0709 | 4.91 × 10−14 | Yes | 0.600 | 0.429 | −0.272 | |
| Ti-6Al-4V | 0.8 | 8 × 10−10 | 4.0249 | 8.07 × 10−9 | Yes | 0.722 | 0.703 | −1.10 |
| 0.9 | 8 × 10−10 | 4.0249 | 1.07 × 10−8 | Yes | 0.746 | 0.746 | −5.35 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, P.; Zhang, C.; Yang, X.; Dong, Z. A Fatigue-Crack Growth Prediction Model Considering Stress Ratio Effects Based on Material Properties. Appl. Sci. 2026, 16, 547. https://doi.org/10.3390/app16010547
Wu P, Zhang C, Yang X, Dong Z. A Fatigue-Crack Growth Prediction Model Considering Stress Ratio Effects Based on Material Properties. Applied Sciences. 2026; 16(1):547. https://doi.org/10.3390/app16010547
Chicago/Turabian StyleWu, Panpan, Chunguo Zhang, Xing Yang, and Zhonghong Dong. 2026. "A Fatigue-Crack Growth Prediction Model Considering Stress Ratio Effects Based on Material Properties" Applied Sciences 16, no. 1: 547. https://doi.org/10.3390/app16010547
APA StyleWu, P., Zhang, C., Yang, X., & Dong, Z. (2026). A Fatigue-Crack Growth Prediction Model Considering Stress Ratio Effects Based on Material Properties. Applied Sciences, 16(1), 547. https://doi.org/10.3390/app16010547
