Modulation of Neuropsychiatric Symptoms by a Volatile Phytocomplex from Tetraclinis articulata in an Aβ1–42 Rat Model of Alzheimer’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Analysis of the Essential Oil
2.2. Experimental Animals
2.3. Experimental Design and Treatment Regimens
2.4. Behavioral Analysis
2.5. Animal Euthanasia and Tissue Collection
2.6. RNA Isolation and Amygdala Real-Time Quantitative PCR (qRT-PCR)
- ARC: Forward 5′-CCCTGCAGCCCAAGTTCAAG-3′, Reverse 5′-GAAGGCTCAGCTGCCTGCTC-3′;
- BDNF: Forward 5′-ATTACCTGCATGCCGCAAAC-3′, Reverse 5′-TGACCCACTCGCTAATACTGT-3′;
- IL-1β: Forward 5′-AGCACCTTCTTTTCCTTCATCTT-3′, Reverse 5′-CAGACAGCAGGCATTTT-3′.
2.7. Protein Extraction
2.8. Determination of Oxidative Stress Marker Levels
2.9. Determination of Antioxidant Enzyme Activities
2.10. Determination of Apoptotic DNA Fragmentation
2.11. Statistical Analysis
3. Results and Discussion
3.1. The Effects of TLO on Anxiety- and Depression-like Behaviors
3.2. The Effects of TLO on Neuroplasticity Markers
3.3. The Effects of TLO on Oxidative Stress Markers and Enzymatic Antioxidant Defense
3.4. The Effects of TLO on Apoptotic DNA Fragmentation and Inflammatory Markers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Jimenez, A.; Giil, L.M.; Tovar-Rios, D.A.; Borda, M.G.; Ferreira, D.; Brønnick, K.; Oppedal, K.; Aarsland, D. Association Between Amygdala Volume and Trajectories of Neuropsychiatric Symptoms in Alzheimer’s Disease and Dementia With Lewy Bodies. Front. Neurol. 2021, 12, 679984. [Google Scholar] [CrossRef]
- Stouffer, K.M.; Grande, X.; Düzel, E.; Johansson, M.; Creese, B.; Witter, M.P.; Miller, M.I.; Wisse, L.E.M.; Berron, D. Amidst an Amygdala Renaissance in Alzheimer’s Disease. Brain 2024, 147, 816–829. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, M.; Villar-Conde, S.; Astillero-Lopez, V.; Villanueva-Anguita, P.; Ubeda-Banon, I.; Flores-Cuadrado, A.; Martinez-Marcos, A.; Saiz-Sanchez, D. Human Amygdala Involvement in Alzheimer’s Disease Revealed by Stereological and Dia-PASEF Analysis. Brain Pathol. 2023, 33, e13180. [Google Scholar] [CrossRef]
- Fisher, D.W.; Dunn, J.T.; Dong, H. Distinguishing Features of Depression in Dementia from Primary Psychiatric Disease. Discov. Ment. Health 2024, 4, 3. [Google Scholar] [CrossRef]
- Untu, I.; Davidson, M.; Stanciu, G.D.; Rabinowitz, J.; Dobrin, R.P.; Vieru, D.S.; Tamba, B.I. Neurobiological and Therapeutic Landmarks of Depression Associated with Alzheimer’s Disease Dementia. Front. Aging Neurosci. 2025, 17, 1584607. [Google Scholar] [CrossRef]
- Küpeli Akkol, E.; Tatlı Çankaya, I.; Şeker Karatoprak, G.; Carpar, E.; Sobarzo-Sánchez, E.; Capasso, R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front. Pharmacol. 2021, 12, 669638. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Abzhandadze, T.; Hoang, M.T.; Sacuiu, S.; Jurado, P.G.; Pereira, J.B.; Naia, L.; Kele, J.; Maioli, S.; Xu, H.; et al. Antidepressant Use and Cognitive Decline in Patients with Dementia: A National Cohort Study. BMC Med. 2025, 23, 82. [Google Scholar] [CrossRef]
- Borda, M.G.; Jaramillo-Jimenez, A.; Oesterhus, R.; Santacruz, J.M.; Tovar-Rios, D.A.; Soennesyn, H.; Cano-Gutierrez, C.A.; Vik-Mo, A.O.; Aarsland, D. Benzodiazepines and Antidepressants: Effects on Cognitive and Functional Decline in Alzheimer’s Disease and Lewy Body Dementia. Int. J. Geriatr. Psychiatry 2021, 36, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, S.; Pathak, K.; Devi, M.; Saikia, R.; Das, J.; Kashyap, V.H.; Das, D.; Ahmad, M.Z.; Abdel-Wahab, B.A. Some Promising Medicinal Plants Used in Alzheimer’s Disease: An Ethnopharmacological Perspective. Discov. Appl. Sci. 2024, 6, 215. [Google Scholar] [CrossRef]
- Kwon, C.Y.; Lee, B. Herbal Medicine for Behavioral and Psychological Symptoms of Dementia: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 713287. [Google Scholar] [CrossRef]
- John, O.O.; Amarachi, I.S.; Chinazom, A.P.; Adaeze, E.; Kale, M.B.; Umare, M.D.; Upaganlawar, A.B. Phytotherapy: A Promising Approach for the Treatment of Alzheimer’s Disease. Pharmacol. Res.—Mod. Chin. Med. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yin, R.; Guo, P.; Lei, N.; Li, G.; Xiong, L.; Xie, Y. Therapeutic Potential of Aromatic Plant Extracts in Alzheimer’s Disease: Comprehensive Review of Their Underlying Mechanisms. CNS Neurosci. Ther. 2023, 29, 2045–2059. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Frias, J.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria Japonica (Cupressaceae): In Vitro and In Silico Studies. Int. J. Mol. Sci. 2024, 25, 12328. [Google Scholar] [CrossRef]
- Khatib, S.; Sobeh, M.; Bouissane, L. Tetraclinis Articulata (Vahl) Masters: An Insight into Its Ethnobotany, Phytochemistry, Toxicity, Biocide and Therapeutic Merits. Front. Pharmacol. 2022, 13, 977726. [Google Scholar] [CrossRef]
- Sadiki, F.Z.F.Z.; Idrissi, M.E.M.E.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L.; Postu, P.A.P.A. Tetraclinis Articulata Essential Oil Mitigates Cognitive Deficits and Brain Oxidative Stress in an Alzheimer’s Disease Amyloidosis Model. Phytomedicine 2019, 56, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Khatib, S.; Mahdi, I.; Drissi, B.; Fahsi, N.; Bouissane, L.; Sobeh, M. Tetraclinis Articulata (Vahl) Mast.: Volatile Constituents, Antioxidant, Antidiabetic and Wound Healing Activities of Its Essential Oil. Heliyon 2024, 10, e24563. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080475134. [Google Scholar]
- Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Sadiki, F.Z.; El Idrissi, M.; Hritcu, L. Pinus Halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022, 10, 2300. [Google Scholar] [CrossRef]
- Venkataraman, A.; Ingraham, H. Elevated Plus Maze Protocol; protocols.io; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Schiavone, S.; Tucci, P.; Mhillaj, E.; Bove, M.; Trabace, L.; Morgese, M.G. Antidepressant Drugs for Beta Amyloid-Induced Depression: A New Standpoint? Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 78, 114–122. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-Related Changes in Oxidized Proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Winterbourn, C.; Hawkins, R.; Brian, M.; Carrell, R. The Estimation of Red Cell Superoxide Dismutase Activity. J. Lab. Clin. Med. 1975, 85, 337. [Google Scholar] [PubMed]
- Fukuzawa, K.; Tokumura, A. Glutathione Peroxidase Activity in Tissues of Vitamin E-Deficient Mice. J. Nutr. Sci. Vitaminol. 1976, 22, 405–407. [Google Scholar] [CrossRef]
- Botto, R.; Callai, N.; Cermelli, A.; Causarano, L.; Rainero, I. Anxiety and Depression in Alzheimer’s Disease: A Systematic Review of Pathogenetic Mechanisms and Relation to Cognitive Decline. Neurol. Sci. 2022, 43, 4107–4124. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tan, E.C.K.; Bush, A.I.; Masters, C.L.; Goudey, B.; Jin, L.; Pan, Y.; Group, A.R. Elucidating the Link Between Anxiety/Depression and Alzheimer’s Dementia in the Australian Imaging Biomarkers and Lifestyle (AIBL) Study. J. Epidemiol. Glob. Health 2024, 14, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, N.E.; Barrow, J.C. Classics in Chemical Neuroscience: Diazepam (Valium). ACS Chem. Neurosci. 2014, 5, 253. [Google Scholar] [CrossRef]
- Johnson, N.R.; Wang, A.C.J.; Coughlan, C.; Sillau, S.; Lucero, E.; Viltz, L.; Markham, N.; Allen, C.; Dhanasekaran, A.R.; Chial, H.J.; et al. Imipramine and Olanzapine Block ApoE4-Catalyzed Polymerization of Aβ and Show Evidence of Improving Alzheimer’s Disease Cognition. Alzheimers Res. Ther. 2022, 14, 88. [Google Scholar] [CrossRef]
- Bakhtazad, S.; Ghotbeddin, Z.; Tabandeh, M.R.; Rahimi, K. Alpha-Pinene Ameliorate Behavioral Deficit Induced by Early Postnatal Hypoxia in the Rat: Study the Inflammatory Mechanism. Sci. Rep. 2024, 14, 6416. [Google Scholar] [CrossRef]
- Hajizadeh Moghaddam, A.; Malekzadeh Estalkhi, F.; Khanjani Jelodar, S.; Ahmed Hasan, T.; Farhadi-Pahnedari, S.; Karimian, M. Neuroprotective Effects of Alpha-Pinene against Behavioral Deficits in Ketamine-Induced Mice Model of Schizophrenia: Focusing on Oxidative Stress Status. IBRO Neurosci. Rep. 2024, 16, 182–189. [Google Scholar] [CrossRef]
- Bigdeli, Y.; Asle-Rousta, M.; Rahnema, M. Effects of Limonene on Chronic Restraint Stress-Induced Memory Impairment and Anxiety in Male Rats. Neurophysiology 2019, 51, 107–113. [Google Scholar] [CrossRef]
- Alkanat, M.; Alkanat, H.Ö. D-Limonene Reduces Depression-like Behaviour and Enhances Learning and Memory through an Anti-Neuroinflammatory Mechanism in Male Rats Subjected to Chronic Restraint Stress. Eur. J. Neurosci. 2024, 60, 4491–4502. [Google Scholar] [CrossRef]
- Jahan, I.; Harun-Ur-Rashid, M.; Islam, M.A.; Sharmin, F.; Al Jaouni, S.K.; Kaki, A.M.; Selim, S. Neuronal Plasticity and Its Role in Alzheimer’s Disease and Parkinson’s Disease. Neural Regen. Res. 2024, 21, 107. [Google Scholar] [CrossRef]
- Heldt, S.A.; Zimmermann, K.; Parker, K.; Gaval, M.; Ressler, K.J. BDNF Deletion or TrkB Impairment in Amygdala Inhibits Both Appetitive and Aversive Learning. J. Neurosci. 2014, 34, 2444–2450. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Kajihara, R. Involvement of Brain-Derived Neurotrophic Factor Signaling in the Pathogenesis of Stress-Related Brain Diseases. Front. Mol. Neurosci. 2023, 16, 1247422. [Google Scholar] [CrossRef]
- Santos, M.; Lima, L.; Carvalho, S.; Mota-Pereira, J.; Pimentel, P.; Maia, D.; Correia, D.; Barroso, M.F.; Gomes, S.; Cruz, A.; et al. The Impact of BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 Genetic Polymorphisms in Antidepressant Treatment Response Phenotypes. Int. J. Mol. Sci. 2023, 24, 6758. [Google Scholar] [CrossRef]
- Li, Y.; Pehrson, A.L.; Waller, J.A.; Dale, E.; Sanchez, C.; Gulinello, M. A Critical Evaluation of the Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1)’s Putative Role in Regulating Dendritic Plasticity, Cognitive Processes, and Mood in Animal Models of Depression. Front. Neurosci. 2015, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Gammie, S.C. Creation of a Gene Expression Portrait of Depression and Its Application for Identifying Potential Treatments. Sci. Rep. 2021, 11, 3829. [Google Scholar] [CrossRef]
- Butterfield, D.A. Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants 2023, 12, 462. [Google Scholar] [CrossRef] [PubMed]
- Arslan, J.; Jamshed, H.; Qureshi, H. Early Detection and Prevention of Alzheimer’s Disease: Role of Oxidative Markers and Natural Antioxidants. Front. Aging Neurosci. 2020, 12, 231. [Google Scholar] [CrossRef]
- Rabib, H.; Elagdi, C.; Hsaine, M.; Fougrach, H.; Koussa, T.; Badri, W. Antioxidant and Antibacterial Activities of the Essential Oil of Moroccan Tetraclinis Articulata (Vahl) Masters. Biochem. Res. Int. 2020, 2020, 9638548. [Google Scholar] [CrossRef]
- Sanshita; Devi, N.; Bhattacharya, B.; Sharma, A.; Singh, I.; Kumar, P.; Huanbutta, K.; Sangnim, T. From Citrus to Clinic: Limonene’s Journey Through Preclinical Research, Clinical Trials, and Formulation Innovations. Int. J. Nanomed. 2025, 20, 4433–4460. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Jeddi, M.; Baraich, A.; Taibi, M.; Haddou, M.; El Hachlafi, N.; Yahyaoui, M.I.; Bellaouchi, R.; El Guerrouj, B.; Chaabane, K.; et al. Optimization of Eugenol, Camphor, and Terpineol Mixture Using Simplex-Centroid Design for Targeted Inhibition of Key Antidiabetic Enzymes. Curr. Issues Mol. Biol. 2025, 47, 512. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, R.; Sapozhnikov, G.; Ni, W.; Li, S.; Song, Y. Recent Developments in the Role of DNA Damage Response and Understanding Its Implications for New Therapeutic Approaches in Alzheimer’s Disease. Transl. Med. Aging 2023, 7, 52–65. [Google Scholar] [CrossRef]
- Firdous, S.M.; Khan, S.A.; Maity, A. Oxidative Stress-Mediated Neuroinflammation in Alzheimer’s Disease. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 8189–8209. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Sun, Y.L.; Ruan, X.F. Bornyl Acetate: A Promising Agent in Phytomedicine for Inflammation and Immune Modulation. Phytomedicine 2023, 114, 154781. [Google Scholar] [CrossRef]
- dos Santos, E.; Leitão, M.M.; Aguero Ito, C.N.; Silva-Filho, S.E.; Arena, A.C.; de Souza Silva-Comar, F.M.; Nakamura Cuman, R.K.; Oliveira, R.J.; Nazari Formagio, A.S.; Leite Kassuya, C.A. Analgesic and Anti-Inflammatory Articular Effects of Essential Oil and Camphor Isolated from Ocimum Kilimandscharicum Gürke Leaves. J. Ethnopharmacol. 2021, 269, 113697. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Stache, A.B.; Sadiki, F.Z.; El Idrissi, M.; Hritcu, L. Modulation of Neuropsychiatric Symptoms by a Volatile Phytocomplex from Tetraclinis articulata in an Aβ1–42 Rat Model of Alzheimer’s Disease. Appl. Sci. 2026, 16, 511. https://doi.org/10.3390/app16010511
Postu PA, Mihasan M, Gorgan DL, Stache AB, Sadiki FZ, El Idrissi M, Hritcu L. Modulation of Neuropsychiatric Symptoms by a Volatile Phytocomplex from Tetraclinis articulata in an Aβ1–42 Rat Model of Alzheimer’s Disease. Applied Sciences. 2026; 16(1):511. https://doi.org/10.3390/app16010511
Chicago/Turabian StylePostu, Paula Alexandra, Marius Mihasan, Dragos Lucian Gorgan, Alexandru Bogdan Stache, Fatima Zahra Sadiki, Mostafa El Idrissi, and Lucian Hritcu. 2026. "Modulation of Neuropsychiatric Symptoms by a Volatile Phytocomplex from Tetraclinis articulata in an Aβ1–42 Rat Model of Alzheimer’s Disease" Applied Sciences 16, no. 1: 511. https://doi.org/10.3390/app16010511
APA StylePostu, P. A., Mihasan, M., Gorgan, D. L., Stache, A. B., Sadiki, F. Z., El Idrissi, M., & Hritcu, L. (2026). Modulation of Neuropsychiatric Symptoms by a Volatile Phytocomplex from Tetraclinis articulata in an Aβ1–42 Rat Model of Alzheimer’s Disease. Applied Sciences, 16(1), 511. https://doi.org/10.3390/app16010511

