Performance Evaluation Methodology for Patterned Micro-Heaters Used in Gas Sensor Applications
Abstract
1. Introduction
2. Methods
2.1. Optimal Design Framework Based on Thermal Performance Evaluation Metrics
2.1.1. Thermo-Electrical Coupling in a Patterned Micro-Heater
2.1.2. Methodology for Performance Evaluation of Micro-Heater Patterns
2.2. Electro-Thermal Simulation of Patterned Micro-Heaters
3. Results and Discussion
3.1. Simulation Results of Various Heater Patterns
3.2. Evaluation Metric Results for Various Heater Patterns
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Experimental Details
Appendix A.1. Fabrication Process of Patterned Micro-Heater Integrated Gas Sensor
Appendix A.2. Experimental Setup and Results

Appendix B. Geometric Details of the Micro-Heater Patterns

References
- Morsi, I.G.; Khedr, M.E.; Aly, A.G.E. Detection of LPG Gas by Using Multi Sensors Array and Fabricated ZnO Gas Sensor. J. Phys. Conf. Ser. 2021, 2128, 012005. [Google Scholar] [CrossRef]
- Pan, H.; Zhou, L.; Zheng, W.; Liu, X.; Zhang, J.; Pinna, N. Atomic Layer Deposition to Heterostructures for Application in Gas Sensors. Int. J. Extrem. Manuf. 2023, 5, 022008. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, U.; Jaber, N.; Alcheikh, N.; Younis, M.I. Selective Multiple Analyte Detection Using Multi-Mode Excitation of a MEMS Resonator. Sci. Rep. 2022, 12, 5297. [Google Scholar] [CrossRef]
- Farea, M.A.; Mohammed, H.Y.; Shirsat, S.M.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, M.D. Hazardous Gases Sensors Based on Conducting Polymer Composites. Chem. Phys. Lett. 2021, 776, 138703. [Google Scholar] [CrossRef]
- Ansari, H.R.; Kordrostami, Z.; Mirzaei, A. In-Vehicle Wireless Driver Breath Alcohol Detection System Using a Microheater Integrated Gas Sensor Based on Sn-Doped CuO Nanostructures. Sci. Rep. 2023, 13, 7136. [Google Scholar] [CrossRef]
- Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2002, 74, 2781–2800. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Zhou, C.; Liao, B. Theoretical Investigation of a Dual-Channel Optical Fibre Surface Plasmon Resonance Hydrogen Sensor Based on Wavelength Modulation. Meas. Sci. Technol. 2013, 24, 065102. [Google Scholar] [CrossRef]
- Qureshi, S.; Hanif, M.; Jeoti, V.; Stojanović, G.M.; Khan, M.T. Review of Fabrication of SAW Sensors on Flexible Substrates: Challenges and Future. Results Eng. 2024, 22, 102323. [Google Scholar] [CrossRef]
- Sun, P.; Zhou, X.; Wang, C.; Shimanoe, K.; Lu, G.; Yamazoe, N. Hollow SnO2/α-Fe2O3 Spheres with a Double-Shell Structure for Gas Sensors. J. Mater. Chem. A 2014, 2, 1302–1308. [Google Scholar] [CrossRef]
- Choi, K.-I.; Kim, H.-J.; Kang, Y.C.; Lee, J.-H. Ultraselective and Ultrasensitive Detection of H2S in Highly Humid Atmosphere Using CuO-Loaded SnO2 Hollow Spheres for Real-Time Diagnosis of Halitosis. Sens. Actuators B Chem. 2014, 194, 371–376. [Google Scholar] [CrossRef]
- Kida, T.; Fujiyama, S.; Suematsu, K.; Yuasa, M.; Shimanoe, K. Pore and Particle Size Control of Gas Sensing Films Using SnO2 Nanoparticles Synthesized by Seed-Mediated Growth. J. Phys. Chem. C 2013, 117, 17574–17582. [Google Scholar] [CrossRef]
- Choi, S.-W.; Katoch, A.; Sun, G.-J.; Kim, J.-H.; Kim, S.-H.; Kim, S.S. Dual Functional Sensing Mechanism in SnO2–ZnO Core–Shell Nanowires. ACS Appl. Mater. Interfaces 2014, 6, 8281–8287. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Okawa, Y.; Inoue, K.; Natukawa, K. Low-Voltage and Low-Power Optimization of Micro-Heater and Its On-Chip Drive Circuitry for Gas Sensor Array. Sens. Actuators A Phys. 2002, 100, 94–101. [Google Scholar] [CrossRef]
- Sun-Kou, R.; Paredes-Doig, A.; Picasso, G.; La Rosa-Toro, A.; Doig-Camino, E. Effect of Temperature on Methanol and Ethanol Measurement Using Noble Metal Doped Tin Oxide Sensors. In Proceedings of the Electrochemical Society Meeting Abstracts; The Electrochemical Society: Pennington, NJ, USA, 2021; p. 1438. [Google Scholar]
- Zhu, L.-Y.; Yuan, K.-P.; Yang, J.-H.; Hang, C.-Z.; Ma, H.-P.; Ji, X.-M.; Devi, A.; Lu, H.-L.; Zhang, D.W. Hierarchical Highly Ordered SnO2 Nanobowl Branched ZnO Nanowires for Ultrasensitive and Selective Hydrogen Sulfide Gas Sensing. Microsyst. Nanoeng. 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, S.; Lu, M.; Zuo, L. A Novel Polyimide Based Micro Heater with High Temperature Uniformity. Sens. Actuators A Phys. 2017, 257, 58–64. [Google Scholar] [CrossRef]
- Jeroish, Z.E.; Bhuvaneshwari, K.S.; Samsuri, F.; Narayanamurthy, V. Microheater: Material, Design, Fabrication, Temperature Control, and Applications—A Role in COVID-19. Biomed. Microdevices 2022, 24, 3. [Google Scholar] [CrossRef]
- Shinde, P.B.; Shiurkar, U.D. MEMS for Detection of Environmental Pollutants: A Review Pertains to Sensors over a Couple of Decades in 21st Century. Mater. Today Proc. 2021, 44, 615–624. [Google Scholar] [CrossRef]
- Abdeslam, A.; Fouad, K.; Khalifa, A. Design and Optimization of Platinium Heaters for Gas Sensor Applications. Dig. J. Nanomater. Biostruct. 2020, 15, 133–141. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, B. Influence of Microheater Patterns: MoSi2-SnO2 as Energy-Saving Chemiresistors for Gas Sensing Applications. Sens. Actuators B Chem. 2022, 351, 130901. [Google Scholar] [CrossRef]
- Bandewad, G.W.; Pawar, S.N.; Shinde, P.B.; Kamble, C.P. Design and Optimization of Microheater for Smart Gas Sensor Applications. Mater. Today Proc. 2022, 62, 3314–3319. [Google Scholar] [CrossRef]
- Tiwaria, S.K.; Bhata, S.; Mahatob, K.K.; Manjunathc, B.B. Design and Simulation of Parallel Microheater. Front. Heat Mass Transf. 2018, 10, 9. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, L.; Hua, Z.; Zhen, D.; Qiu, Z. Design and Optimization of Heating Plate for Metal Oxide Semiconductor Gas Sensor. Microsyst. Technol. 2019, 25, 3511–3519. [Google Scholar] [CrossRef]
- Bedoui, S.; Gomri, S.; Samet, H.C.; Kachouri, A. Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors. Trans. Electr. Electron. Mater. 2016, 17, 189–195. [Google Scholar]
- Iyer, N.G.; Suganthi, S.; Arulmozhi, M.; Sivakumar, P.; Sophia, S.J. Design and Evaluation of Micro-Heater Geometries for MEMS-Based Ozone Gas Sensor through a Theoretical Modeling. Mater. Today Proc. 2022, 66, 2012–2016. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. A Review on Fabrication, Sensing Mechanisms and Performance of Metal Oxide Gas Sensors. J. Mater. Sci. Mater. Electron. 2013, 24, 1410–1421. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A Comprehensive Review on Structures and Gas Sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Oka, N.; Yamada, S.; Yagi, T.; Taketoshi, N.; Jia, J.; Shigesato, Y. Thermophysical Properties of SnO2-Based Transparent Conductive Films: Effect of Dopant Species and Structure. J. Mater. Res. 2014, 29, 1579–1584. [Google Scholar] [CrossRef]
- Gupta, S.; Zou, H. Implementing an analytical model to elucidate the impacts of nanostructure size and topology of morphologically diverse zinc oxide on gas sensing. Chemosensors 2025, 13, 38. [Google Scholar] [CrossRef]
- Gupta, S.; Knoepfel, A.; Zou, H.; Ding, Y. Investigations of methane gas sensor based on biasing operation of n-ZnO nanorods/p-Si assembled diode and Pd functionalized Schottky junctions. Sens. Actuators B Chem. 2023, 392, 134030. [Google Scholar] [CrossRef]
- Masato, D.; Kazmer, D.; Gruber, A. Meta-Analysis of Thermal Contact Resistance in Injection Molding: A Comprehensive Literature Review and Multivariate Modeling. Polym. Eng. Sci. 2023, 63, 3923–3937. [Google Scholar] [CrossRef]
- Hot Disk Instruments. Measuring Thermal Conductivity of Fused Quartz in the Temperature Range 20–1000 °C; Application Note, n.d. Available online: https://www.hotdiskinstruments.com/applications/application-notes/measuring-thermal-conductivity-of-fused-quartz-in-the-temperature-range-20c-to-1000c/ (accessed on 22 September 2025).
- Ho, C.Y.; Powell, R.W.; Liley, P.E. Thermal Conductivity of the Elements. J. Phys. Chem. Ref. Data 1972, 1, 279. [Google Scholar] [CrossRef]
- Flynn, D.R.; O’Hagan, M.E. Measurements of the Thermal Conductivity and Electrical Resistivity of Platinum from 100 to 900 °C; NBS Report 9387; Institute for Applied Technology, National Bureau of Standards: Washington, DC, USA, 1967. [Google Scholar]
- Touloukian, Y.S.; Powell, R.W.; Ho, C.Y.; Klemens, P.G. (Eds.) Thermophysical Properties of Matter, Vol. 2: Thermal Conductivity—yNonmetallic Solids; IFI/Plenum: New York, NY, USA, 1970. [Google Scholar]
- Ustinov, V.A. Experimental Investigation and Modeling of Contact Heat Transfer. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017. [Google Scholar]







| Layer | Substrate | Heater/Temp. Sensor | Passive Layer | IDE | Sensing Material |
| Thickness [m] | 760 | 0.2 | 0.3 | 0.05 | 0.05 |
| Thermal conductivity [W/(m·K)] | –Quartz | –Pt | –Si3N4 | –Au | –SnO2 |
| Electrical conductivity [S/m] | – | –Pt | – | – | – |
| Heat capacity [J/(kg·K)] | 730 | 133 | 700 | 129 | 300 |
| Density [g/] | 2.2 | 21.45 | 3.1 | 19.3 | 6.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yoon, J.; Ha, Y.; Kim, J.; Jung, D.G.; Park, J. Performance Evaluation Methodology for Patterned Micro-Heaters Used in Gas Sensor Applications. Appl. Sci. 2026, 16, 178. https://doi.org/10.3390/app16010178
Yoon J, Ha Y, Kim J, Jung DG, Park J. Performance Evaluation Methodology for Patterned Micro-Heaters Used in Gas Sensor Applications. Applied Sciences. 2026; 16(1):178. https://doi.org/10.3390/app16010178
Chicago/Turabian StyleYoon, Jiyoung, Yuntae Ha, Juhye Kim, Dong Geon Jung, and Jinhyoung Park. 2026. "Performance Evaluation Methodology for Patterned Micro-Heaters Used in Gas Sensor Applications" Applied Sciences 16, no. 1: 178. https://doi.org/10.3390/app16010178
APA StyleYoon, J., Ha, Y., Kim, J., Jung, D. G., & Park, J. (2026). Performance Evaluation Methodology for Patterned Micro-Heaters Used in Gas Sensor Applications. Applied Sciences, 16(1), 178. https://doi.org/10.3390/app16010178

