Feasibility Analysis of Industrial High-Temperature Heat Pumps in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the System
2.2. Mathematical Background
2.2.1. Heat Pump Modeling
2.2.2. Heat Transfer Modeling and Index Definitions
2.3. Followed Methodology
3. Results and Discussion
3.1. Parametric Analysis of the Waste Heat Source-Driven System
3.2. Parametric Analysis of the Ambient-Source-Driven Unit
3.3. Sustainability Analysis
4. Conclusions
- -
- The utilization of low-grade waste heat sources is beneficial for increasing the COP of the heat pump, with this scenario outperforming the ambient-source heat pump. In terms of exergy efficiency, there is an optimal waste heat source temperature for maximizing the unit performance for every scenario.
- -
- It was concluded that rises in the heat temperature reduce the performance due to the difficulties that the heat pump faces in achieving a high-temperature lift. The waste heat-driven system can produce useful heat up to 180 °C, while the ambient-source system does so up to 160 °C.
- -
- The results indicate system economic sustainability for process heat temperatures up to 160 °C and in the cases with higher waste heat input temperatures. For the ambient-source high-temperature heat pump, the economically viable scenario was found only for the case of heat production at 100 °C due to significant efficiency reductions at higher temperatures.
- -
- For the waste heat source-driven system, the LCOE ranged from 0.0220 EUR/kWh to 0.1024 EUR/kWh, while for the ambient source, it ranged from 0.0562 EUR/kWh to 0.0977 EUR/kWh, and for the natural gas boiler, it was found at 0.0602 EUR/kWh. Therefore, the application of heat pumps is not always an economically viable choice.
- -
- For the ambient-source heat pump, economic viability is only found for the cases with Tprocess = 100 °C. For the cases with the waste heat stream-driven heat pump, economic viability always exists for Tprocess = 100, 110 and 120 °C, while for Tprocess = 170 and 180 °C, the economic results are less favorable. For the intermediate cases, economic viability is achieved from a minimum waste source temperature. Specifically, for Tprocess = 130 °C, the economically viable designs need Twin ≥ 55 °C; for Tprocess = 140 °C, the economically viable designs need Twin ≥ 65 °C; for Tprocess = 150 °C, the economically viable designs need Twin ≥ 80 °C; and for Tprocess = 160 °C, the economically viable designs need Twin ≥ 90 °C.
- -
- Both waste heat- and ambient-source-driven heat pumps lead to CO2 emission reductions compared to the scenario of using a conventional natural gas boiler. The CO2 emission reductions for the waste heat source-driven heat pump were found to vary from 13.38% to 82.61% compared to the natural gas boiler, while for the ambient-source heat pump, they ranged from 26.76% to 72.60% compared to the natural gas boiler.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CC | Capital cost, EUR |
cp | Specific heat capacity, kJ/kgK |
E | Energy, kWh |
Ex | Exergy rate, kW |
h | Specific enthalpy, kJ/kg |
LCC | Life cycle cost, EUR |
LCOE | Levelized cost of energy, EUR/kWh |
m | Mass flow rate, kg/s |
N | Lifetime of the project, years |
NCF | Yearly net cash flow, EUR |
Pel | Electricity, kW |
PP | Pinch point, K |
Q | Heat rate, kW |
r | Discount factor, % |
T | Temperature, °C |
W | Work rate, kW |
Greek Symbols | |
ΔTlift | Temperature lift, K |
ΔTs | Temperature difference in the source heat transfer fluid, K |
ηis | Isentropic efficiency of the compressor |
ηmotor | Motor-shaft efficiency |
Subscripts and Superscripts | |
am | Ambient |
B | Boiler |
com | Compressor |
cond | Condenser |
evap | Evaporator |
heat | Process heat |
in | Inlet |
is | Isentropic |
out | Outlet |
pr | Process |
process | Process |
s | Heat source |
w | Waste heat |
w,max | Maximum waste heat |
Abbreviations | |
COP | Coefficient of performance |
HTHP | High-temperature heat pump |
PCM | Phase change materials |
WHS | Waste heat stream |
Appendix A. Results for the WHS-Based HTHP
Tprocess (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Twin (°C) | COP | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
50 | 2.388 | 2.153 | 1.950 | 1.770 | 1.607 | 1.455 | 1.312 | 1.175 | 1.039 | |
55 | 2.527 | 2.267 | 2.044 | 1.849 | 1.673 | 1.511 | 1.359 | 1.213 | 1.071 | |
60 | 2.683 | 2.394 | 2.149 | 1.935 | 1.745 | 1.571 | 1.409 | 1.255 | 1.105 | |
65 | 2.858 | 2.534 | 2.263 | 2.030 | 1.824 | 1.637 | 1.464 | 1.301 | 1.143 | |
70 | 3.057 | 2.692 | 2.391 | 2.134 | 1.910 | 1.709 | 1.524 | 1.351 | 1.184 | |
75 | 3.285 | 2.870 | 2.533 | 2.250 | 2.006 | 1.788 | 1.590 | 1.405 | 1.229 | |
80 | 3.548 | 3.072 | 2.693 | 2.380 | 2.111 | 1.875 | 1.662 | 1.465 | 1.278 | |
85 | 3.855 | 3.304 | 2.874 | 2.524 | 2.229 | 1.971 | 1.741 | 1.530 | 1.331 | |
90 | 4.216 | 3.572 | 3.080 | 2.686 | 2.359 | 2.078 | 1.828 | 1.602 | 1.390 | |
95 | 4.649 | 3.884 | 3.315 | 2.869 | 2.505 | 2.196 | 1.925 | 1.681 | 1.455 | |
100 | 5.175 | 4.252 | 3.587 | 3.078 | 2.669 | 2.327 | 2.031 | 1.768 | 1.526 |
Tprocess (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Twin (°C) | LCC (EUR/kWh) | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
50 | 2.996 | 3.310 | 3.641 | 3.999 | 4.393 | 4.839 | 5.353 | 5.963 | 6.728 | |
55 | 2.838 | 3.149 | 3.480 | 3.834 | 4.224 | 4.664 | 5.172 | 5.780 | 6.531 | |
60 | 2.680 | 2.989 | 3.316 | 3.669 | 4.055 | 4.491 | 4.993 | 5.591 | 6.333 | |
65 | 2.523 | 2.830 | 3.155 | 3.503 | 3.885 | 4.315 | 4.810 | 5.397 | 6.127 | |
70 | 2.367 | 2.671 | 2.992 | 3.338 | 3.715 | 4.138 | 4.625 | 5.202 | 5.919 | |
75 | 2.211 | 2.513 | 2.831 | 3.172 | 3.543 | 3.960 | 4.438 | 5.007 | 5.707 | |
80 | 2.056 | 2.356 | 2.670 | 3.005 | 3.373 | 3.782 | 4.251 | 4.807 | 5.492 | |
85 | 1.902 | 2.199 | 2.510 | 2.841 | 3.201 | 3.604 | 4.064 | 4.608 | 5.279 | |
90 | 1.749 | 2.043 | 2.350 | 2.677 | 3.031 | 3.425 | 3.876 | 4.406 | 5.060 | |
95 | 1.598 | 1.889 | 2.192 | 2.514 | 2.862 | 3.247 | 3.687 | 4.205 | 4.839 | |
100 | 1.448 | 1.736 | 2.035 | 2.351 | 2.693 | 3.071 | 3.501 | 4.004 | 4.620 |
Tprocess (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Twin (°C) | LCOE (EUR/kWh) | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
50 | 0.0456 | 0.0504 | 0.0554 | 0.0609 | 0.0669 | 0.0737 | 0.0815 | 0.0908 | 0.1024 | |
55 | 0.0432 | 0.0479 | 0.0530 | 0.0584 | 0.0643 | 0.0710 | 0.0787 | 0.0880 | 0.0994 | |
60 | 0.0408 | 0.0455 | 0.0505 | 0.0558 | 0.0617 | 0.0684 | 0.0760 | 0.0851 | 0.0964 | |
65 | 0.0384 | 0.0431 | 0.0480 | 0.0533 | 0.0591 | 0.0657 | 0.0732 | 0.0822 | 0.0933 | |
70 | 0.0360 | 0.0407 | 0.0455 | 0.0508 | 0.0565 | 0.0630 | 0.0704 | 0.0792 | 0.0901 | |
75 | 0.0337 | 0.0383 | 0.0431 | 0.0483 | 0.0539 | 0.0603 | 0.0676 | 0.0762 | 0.0869 | |
80 | 0.0313 | 0.0359 | 0.0406 | 0.0457 | 0.0513 | 0.0576 | 0.0647 | 0.0732 | 0.0836 | |
85 | 0.0289 | 0.0335 | 0.0382 | 0.0432 | 0.0487 | 0.0549 | 0.0619 | 0.0701 | 0.0803 | |
90 | 0.0266 | 0.0311 | 0.0358 | 0.0407 | 0.0461 | 0.0521 | 0.0590 | 0.0671 | 0.0770 | |
95 | 0.0243 | 0.0287 | 0.0334 | 0.0383 | 0.0436 | 0.0494 | 0.0561 | 0.0640 | 0.0737 | |
100 | 0.0220 | 0.0264 | 0.0310 | 0.0358 | 0.0410 | 0.0467 | 0.0533 | 0.0609 | 0.0703 |
Tprocess (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Twin (°C) | CO2 (tn/kWh) | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
50 | 277.3 | 307.6 | 339.6 | 374.2 | 412.1 | 455.2 | 504.8 | 563.6 | 637.4 | |
55 | 262.1 | 292.1 | 324.0 | 358.2 | 395.8 | 438.3 | 487.3 | 546.0 | 618.4 | |
60 | 246.8 | 276.6 | 308.2 | 342.3 | 379.5 | 421.6 | 470.0 | 527.7 | 599.3 | |
65 | 231.7 | 261.3 | 292.6 | 326.2 | 363.1 | 404.6 | 452.4 | 509.0 | 579.4 | |
70 | 216.6 | 246.0 | 277.0 | 310.3 | 346.7 | 387.5 | 434.6 | 490.2 | 559.3 | |
75 | 201.6 | 230.8 | 261.5 | 294.3 | 330.1 | 370.4 | 416.5 | 471.4 | 538.9 | |
80 | 186.7 | 215.6 | 245.9 | 278.3 | 313.7 | 353.2 | 398.5 | 452.1 | 518.2 | |
85 | 171.8 | 200.4 | 230.4 | 262.4 | 297.1 | 336.0 | 380.4 | 432.8 | 497.6 | |
90 | 157.1 | 185.4 | 215.0 | 246.6 | 280.7 | 318.7 | 362.3 | 413.4 | 476.4 | |
95 | 142.5 | 170.5 | 199.8 | 230.8 | 264.4 | 301.6 | 344.0 | 394.0 | 455.2 | |
100 | 128.0 | 155.8 | 184.6 | 215.2 | 248.1 | 284.6 | 326.1 | 374.6 | 434.0 |
References
- Thu, K.; Takezato, K.; Takata, N.; Miyazaki, T.; Higashi, Y. Performance evaluation of a heat pump system using an HFC32/HFO1234yf blend with GWP below 150 for heating applications. Appl. Therm. Eng. 2021, 182, 115952. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Arpagaus, C.; Neofytou, P.; Bertsch, S. Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150 °C. Energy Convers. Manag. 2020, 226, 113488. [Google Scholar] [CrossRef]
- Feng, J.; Gao, J.; Hu, B.; Wang, R.; Xu, Z. A mass-coupled hybrid absorption-compression heat pump with output temperature of 200 °C. Energy 2024, 312, 133608. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.; Tang, X.; Huang, K.; Zhao, W.; Zhang, J. Thermodynamic analysis of a modified cascade high temperature heat pump with zeotropic mixtures for heating production up to 200 °C. Energy Convers. Manag. 2025, 324, 119307. [Google Scholar] [CrossRef]
- Spale, J.; Hoess, A.J.; Bell, I.H.; Ziviani, D. Exploratory study on low-GWP working fluid mixtures for industrial high temperature heat pump with 200 °C supply temperature. Energy 2024, 308, 132677. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Qin, Y.; Wang, G.; Liu, R.; Yang, Y. A Review of Super-High-Temperature Heat Pumps over 100 °C. Energies 2023, 16, 4591. [Google Scholar] [CrossRef]
- Mateu-Royo, C.; Sawalha, S.; Mota-Babiloni, A.; Navarro-Esbrí, J. High temperature heat pump integration into district heating network. Energy Convers. Manag. 2020, 210, 112719. [Google Scholar] [CrossRef]
- Sadeghi, M.; Petersen, T.; Yang, Z.; Zühlsdorf, B.; Madsen, K.S. Thermal and economic performance assessment of different high temperature heat pump layouts for upgrading district heating to process heating of steam production at 160 °C. Energy 2024, 313, 133832. [Google Scholar] [CrossRef]
- Yoo, J.; Estrada-Perez, C.E.; Choi, B.-H. Investigation of heat pump technologies for high-temperature applications above 250 °C. Appl. Energy 2025, 384, 125384. [Google Scholar] [CrossRef]
- Bobbo, S.; Lombardo, G.; Menegazzo, D.; Vallese, L.; Fedele, L. A Technological Update on Heat Pumps for Industrial Applications. Energies 2024, 17, 4942. [Google Scholar] [CrossRef]
- Bever, P.-M.; Bless, F.; Arpagaus, C.; Bertsch, S.S. High-Temperature Heat Pumps for Industrial Use. Chem. Ing. Tech. 2024, 96, 1071–1084. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R. When and how to use cascade high temperature heat pump—Its multi-criteria evaluation. Energy Convers. Manag. 2024, 309, 118435. [Google Scholar] [CrossRef]
- Kong, L.; Walmsley, T.G.; Hoang, D.K.; Schlosser, F.; Chen, Q.; Carson, J.K.; Cleland, D.J. Transcritical-transcritical cascade CO2 heat pump cycles for high-temperature heating: A numerical evaluation. Appl. Therm. Eng. 2024, 238, 122005. [Google Scholar] [CrossRef]
- Dai, B.; Liu, C.; Liu, S.; Wang, D.; Wang, Q.; Zou, T.; Zhou, X. Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery. Appl. Therm. Eng. 2023, 219, 119570. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Wu, K.; Ge, Z.; Yang, Y. Analysis of a New Super High Temperature Hybrid Absorption-Compression Heat Pump Cycle. Energies 2022, 15, 7515. [Google Scholar] [CrossRef]
- Padullés, R.; Hansen, M.L.; Andersen, M.P.; Zühlsdorf, B.; Jensen, J.K.; Elmegaard, B. Optimal operation of industrial heat pumps with stratified thermal energy storage for emissions and cost reduction using day-ahead predictions. Appl. Therm. Eng. 2025, 266, 125703. [Google Scholar] [CrossRef]
- Zühlsdorf, B.; Bühler, F.; Bantle, M.; Elmegaard, B. Analysis of technologies and potentials for heat pump-based process heat supply above 150 °C. Energy Convers. Manag. X 2019, 2, 100011. [Google Scholar] [CrossRef]
- Tzouganakis, P.; Bellos, E.; Rakopoulos, D.; Skembris, A.; Rogkas, N. Thermodynamic analysis of a solar-fed heat upgrade system using the reverse air brayton cycle. Renew. Energy 2025, 238, 121975. [Google Scholar] [CrossRef]
- EES: Engineering Equation Solver | F-Chart Software: Engineering Software n.d. Available online: https://fchartsoftware.com/ees/ (accessed on 15 January 2025).
- Therminol VP-1 Heat Transfer Fluid | Therminol | Eastman n.d. Available online: https://www.therminol.com/product/71093459 (accessed on 15 January 2025).
- Bellos, E. A detailed analysis of waste heat recovery organic Rankine cycle with partial evaporation and different working fluids. Appl. Therm. Eng. 2025, 263, 125410. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Said, Z. Investigation and optimization of a solar-assisted pumped thermal energy storage system with flat plate collectors. Energy Convers. Manag. 2021, 237, 114137. [Google Scholar] [CrossRef]
- Steger, D.; Regensburger, C.; Eppinger, B.; Will, S.; Karl, J.; Schlücker, E. Design aspects of a reversible heat pump—Organic rankine cycle pilot plant for energy storage. Energy 2020, 208, 118216. [Google Scholar] [CrossRef]
- Eppinger, B.; Zigan, L.; Karl, J.; Will, S. Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids. Appl. Energy 2020, 280, 115940. [Google Scholar] [CrossRef]
- JRC Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP (accessed on 15 January 2025).
- Jarre, M.; Noussan, M.; Poggio, A. Operational analysis of natural gas combined cycle CHP plants: Energy performance and pollutant emissions. Appl. Therm. Eng. 2016, 100, 304–314. [Google Scholar] [CrossRef]
- Gas Reference Prices—EnExGroup. Available online: https://www.enexgroup.gr/gas-reference-prices (accessed on 15 January 2025).
- Greek Technical Chamber ΤΟΤΕΕ 20701-1 Technical Guidelines on Buildings’ Energy Performance 2017. Available online: https://www.kenak.gr/files/TOTEE_20701-1_2017.pdf (accessed on 15 January 2025).
- Capital.gr. Available online: https://www.capital.gr/epikairotita/3879562/olo-kai-akriboteri-i-energeia-gia-tin-elliniki-biomixania-fotia-stis-times-reumatos-kai-aeriou/ (accessed on 15 January 2025).
- Euro2dayGr. Available online: https://www.euro2day.gr/news/economy/article/2280393/pshlonei-to-energeiako-kostos-gia-thn-ellhnikh-vio.html (accessed on 15 January 2025).
- DAPEEP. Available online: https://www.dapeep.gr/dimosieuseis/eguiseis-proeleusis-energeiako/ (accessed on 15 January 2025).
- Bellos, E.; Tsimpoukis, D.; Lykas, P.; Kitsopoulou, A.; Korres, D.N.; Vrachopoulos, M.G.; Tzivanidis, C. Investigation of a High-Temperature Heat Pump for Heating Purposes. Appl. Sci. 2023, 13, 2072. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Isentropic efficiency of the compressor | ηis | 70% |
Motor and shaft efficiency | ηmotor | 90% |
WHS mass flow rate | mw | 10 kg/s |
Specific heat capacity of the WHS | cp,w | 1.1 kJ/kgK |
Specific heat capacity of the thermal oil | cp,s | 1.9 kJ/kgK |
Temperature difference of the thermal oil | ΔΤs | 5 K |
Pinch point in the heat exchangers | PP | 5 K |
Default ambient temperature | Tam | 25 °C |
Parameter | Symbol | Range |
---|---|---|
Process heat capacity | Qprocess | 100 to 500 kW |
Process heat temperature level | Tprocess | 100 to 180 °C |
WHS inlet temperature | Twin | 50 to 100 °C |
Parameter | Value |
---|---|
Gas boiler efficiency | 70% |
Natural gas cost | 0.06 EUR/kWhth |
CO2 specific emissions factor for the natural gas | 0.196 kgCO2/kWh |
CO2 specific emissions factor for the electricity | 0.252 kgCO2/kWh |
HTHP cost | 300 EUR/kWh |
Electricity cost | 0.15 EUR/kWh |
Maintenance cost | 2% of the capital cost |
Lifetime period of the investment | 25 years |
Discount factor | 3% |
Operation time per year | 8760 h |
Ambient-Source HTHP | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tprocess (°C) | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
COP | 1.924 | 1.748 | 1.593 | 1.453 | 1.325 | 1.204 | 1.090 | - | - |
Eel (MWh) | 1366 | 1503 | 1650 | 1809 | 1984 | 2182 | 2412 | - | - |
LCC (MEUR) | 3.690 | 4.048 | 4.430 | 4.845 | 5.303 | 5.821 | 6.421 | - | - |
LCOE (EUR/kWh) | 0.0562 | 0.0616 | 0.0674 | 0.0737 | 0.0807 | 0.0886 | 0.0977 | - | - |
CO2 emissions(tn/y) | 344.3 | 378.9 | 415.7 | 455.7 | 500.0 | 549.9 | 607.8 | - | - |
WHS–HTHP at the Temperature of 75 °C | |||||||||
COP | 3.285 | 2.87 | 2.533 | 2.25 | 2.006 | 1.788 | 1.59 | 1.405 | 1.229 |
Eel (MWh) | 800 | 916 | 1038 | 1168 | 1310 | 1470 | 1653 | 1870 | 2138 |
LCC (MEUR) | 2.211 | 2.513 | 2.831 | 3.172 | 3.543 | 3.960 | 4.438 | 5.007 | 5.707 |
LCOE (EUR/kWh) | 0.0337 | 0.0383 | 0.0431 | 0.0483 | 0.0539 | 0.0603 | 0.0676 | 0.0762 | 0.0869 |
CO2 emissions(tn/y) | 201.6 | 230.8 | 261.5 | 294.3 | 330.1 | 370.4 | 416.5 | 471.4 | 538.9 |
Natural Gas Boiler | |||||||||
EB (MWh) | 3754 | ||||||||
LCC (MEUR) | 3.954 | ||||||||
LCOE (EUR/kWh) | 0.0602 | ||||||||
CO2 emissions(tn/y) | 735.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellos, E.; Gonidaki, D.; Nazos, A.; Kaldellis, J.K. Feasibility Analysis of Industrial High-Temperature Heat Pumps in Greece. Appl. Sci. 2025, 15, 5171. https://doi.org/10.3390/app15095171
Bellos E, Gonidaki D, Nazos A, Kaldellis JK. Feasibility Analysis of Industrial High-Temperature Heat Pumps in Greece. Applied Sciences. 2025; 15(9):5171. https://doi.org/10.3390/app15095171
Chicago/Turabian StyleBellos, Evangelos, Dimitra Gonidaki, Antonios Nazos, and John K. Kaldellis. 2025. "Feasibility Analysis of Industrial High-Temperature Heat Pumps in Greece" Applied Sciences 15, no. 9: 5171. https://doi.org/10.3390/app15095171
APA StyleBellos, E., Gonidaki, D., Nazos, A., & Kaldellis, J. K. (2025). Feasibility Analysis of Industrial High-Temperature Heat Pumps in Greece. Applied Sciences, 15(9), 5171. https://doi.org/10.3390/app15095171