The Impact of Fresh Blueberry Addition on the Extrusion-Cooking Process, Physical Properties and Antioxidant Potential of Potato-Based Snack Pellets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mixtures and Extrusion-Cooking Process
2.3. Efficiency of the Extrusion-Cooking Process
2.4. Energy Consumption of the Extrusion-Cooking Process
2.5. Bulk Density of Snack Pellets
2.6. Durability of Extrudates
2.7. Water Absorption Index of Snack Pellets
2.8. The Water Solubility Index of Snack Pellets
2.9. Preparation of Extracts
2.10. Evaluation of Free Radical Scavenging Activity—DPPH Method
2.11. Content of Phenolic Acids
2.12. Total Content of Polyphenolic Compounds (TPC) with Use of Folin-Ciocalteu Method
2.13. Statistical Analysis
3. Results and Discussion
3.1. Impact of Ingredients and Processing Conditions on Extrusion-Cooking Process
3.2. Impact of Ingredients and Processing Conditions on Selected Physical Properties
3.3. Impact of Ingredients and Processing Conditions on Phenolic Content and Antioxidant Activity
3.3.1. Free Radical Scavenging Activity—DPPH Method
3.3.2. Content of Polyphenols Based on Folin-Ciocalteu Method
3.3.3. Content of Phenolic Acids—UPLC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Lan, W.; Chen, D. Blueberry (Vaccinium spp.) Anthocyanins and Their Functions, Stability, Bioavailability, and Applications. Foods 2024, 13, 2851. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.; Pandey, G.; Thomas, R.; Parks, S. Improving Blueberry Fruit Nutritional Quality through Physiological and Genetic Interventions: A Review of Current Research and Future Directions. Antioxidants 2023, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Song, G.-Q.; Hancock, J.F. Recent Advances in Blueberry Transformation. Int. J. Fruit Sci. 2012, 12, 316–332. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–200. [Google Scholar] [CrossRef]
- Lachowicz-Wiśniewska, S.; Pratap-Singh, A.; Ochmian, I.; Kapusta, I.; Kotowska, A.; Pluta, S. Biodiversity in nutrients and biological activities of 14 highbush blueberry (Vaccinium corymbosum L.) cultivars. Sci. Rep. 2024, 14, 22063. [Google Scholar] [CrossRef]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S.; et al. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2019, 24, 24. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Cătunescu, G.M.; González, M.M.-P.; Hornedo-Ortega, R.; Pop, C.R.; Rusu, C.C.; Chirilă, F.; Rotar, A.M.; Garcia-Parrilla, M.C.; Troncoso, A.M. Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants 2020, 9, 478. [Google Scholar] [CrossRef]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef]
- Subash, S.; Essa, M.M.; Al-Adawi, S.; Memon, M.A.; Manivasagam, T.; Akbar, M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res. 2014, 9, 1557–1566. [Google Scholar] [CrossRef]
- Johnson, S.A.; Arjmandi, B.H. Evidence for anti-cancer properties of blueberries: A mini-review. Anti-Cancer Agents Med. Chem. 2013, 8, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants 2021, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Choton, S.; Gupta, N.; Bandral, J.D.; Anjum, N.; Choudary, A. Extrusion technology and its application in food processing: A review. Pharm. Innov. 2020, 9, 162–168. [Google Scholar] [CrossRef]
- Šárka, E.; Sluková, M.; Henke, S. Changes in Phenolics during Cooking Extrusion: A Review. Foods 2021, 10, 2100. [Google Scholar] [CrossRef]
- Mironeasa, S.; Coţovanu, I.; Mironeasa, C.; Ungureanu-Iuga, M. A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. Antioxidants 2023, 12, 1453. [Google Scholar] [CrossRef]
- Offiah, V.; Kontogiorgos, V.; Falade, K.O. Extrusion processing of raw food materials and by-products: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2979–2998. [Google Scholar] [CrossRef]
- Cotacallapa-Sucapuca, M.; Vega, E.N.; Maieves, H.A.; Berrios, J.D.J.; Morales, P.; Fernández-Ruiz, V.; Cámara, M. Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods 2021, 10, 1096. [Google Scholar] [CrossRef]
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-Cooking Modifies Physicochemical and Nutrition-Related Properties of Wheat Bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef]
- Combrzyński, M.; Oniszczuk, T.; Wójtowicz, A.; Biernacka, B.; Wojtunik-Kulesza, K.; Bąkowski, M.; Różyło, R.; Szponar, J.; Soja, J.; Oniszczuk, A. Nutritional Characteristics of New Generation Extruded Snack Pellets with Edible Cricket Flour Processed at Various Extrusion Conditions. Antioxidants 2023, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, Y.; Wang, R.; Sun, Y.; Li, X.; Liang, J. Effects of Adding Blueberry Residue Powder and Extrusion Processing on Nutritional Components, Antioxidant Activity and Volatile Organic Compounds of Indica Rice Flour. Biology 2022, 11, 1817. [Google Scholar] [CrossRef]
- Estupiñan-Amaya, M.; Fuenmayor, C.A.; López-Córdoba, A. New Freeze-Dried Andean Blueberry Juice Powders for Potential Application as Functional Food Ingredients: Effect of Maltodextrin on Bioactive and Morphological Features. Molecules 2020, 25, 5635. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.F.; Guelpa, R.; Vaihinger, M.; Vaihinger, M.; Brunner, T.; Costa, J.A.; Denkel, C. Extruded snacks enriched with açaí berry: Physicochemical properties and bioactive constituents. Food Sci. Technol. 2022, 42, 14822. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Różyło, R.; Bąkowski, M.; Wojtunik-Kulesza, K.; Mołdoch, J.; Kowalska, I. Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. Plants 2023, 12, 3276. [Google Scholar] [CrossRef]
- Matysiak, A.; Wójtowicz, A.; Oniszczuk, T. Process efficiency and energy consumption during the extrusion of potato and multigram formulations. Agric. Eng. 2018, 22, 49–57. [Google Scholar] [CrossRef]
- Combrzyński, M.; Biernacka, B.; Wójtowicz, A.; Kupryaniuk, K.; Oniszczuk, T.; Mitrus, M.; Różyło, R.; Gancarz, M.; Stasiak, M.; Kasprzak-Drozd, K. Analysis of the extrusion-cooking process and selected physical properties of snack pellets with the addition of fresh kale. Int. Agroph. 2023, 37, 353–364. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Oniszczuk, T.; Mitrus, M.; Różyło, R.; Gancarz, M.; Oniszczuk, A. Application of Edible Insect Flour as a Novel Ingredient in Fortified Snack Pellets: Processing Aspects and Physical Characteristics. Processes 2023, 11, 2561. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzyński, M.; Lisiecka, K.; Janczak, D. Influence of Modification of the Plasticizing System on the Extrusion-Cooking Process and Selected Physicochemical Properties of Rapeseed and Buckwheat Straws. Materials 2022, 15, 5039. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Czaban, J.; Sułek, A.; Pecio, Ł.; Żuchowski, J.; Podolska, G. Effect of genotype and crop management systems on phenolic acid content in winter wheat grain. J. Food Agric. Environ. 2013, 11, 1201–1206. [Google Scholar]
- Bouasla, A.; Wójtowicz, A.; Juśko, S.; Zidoune, M.N. Energy Consumption and Process Efficiency as Affected by Extrusion-Cooking Conditions and Recipe Formulation During the Production of Gluten-Free Rice-Legumes Products. Agric. Eng. 2017, 21, 39–46. [Google Scholar] [CrossRef]
- Lewko, P.; Wójtowicz, A.; Różańska-Boczula, M. Effect of Extruder Configuration and Extrusion Cooking Processing Parameters on Selected Characteristics of Non-Starch Polysaccharide-Rich Wheat Flour as Hybrid Treatment with Xylanase Addition. Processes 2024, 12, 1159. [Google Scholar] [CrossRef]
- Kantrong, H.; Charunuch, C.; Limsangouan, N.; Pengpinit, W. Influence of process parameters on physical properties and specific mechanical energy of healthy mushroom-rice snacks and optimization of extrusion process parameters using response surface methodology. J. Food Sci. Technol. 2018, 55, 3462–3472. [Google Scholar] [CrossRef]
- Singh, R.; Guerrero, M.; Nickerson, M.T.; Koksel, F. Effects of extrusion screw speed, feed moisture content, and barrel temperature on the physical, techno-functional, and microstructural quality of texturized lentil protein. J. Food Sci. 2024, 89, 2040–2053. [Google Scholar] [CrossRef]
- Umoh, E.O.; Iwe, M.O. Influence of extrusion process conditions on bulk density, water absorption capacity and oil absorption capacity of extruded aerial yam-soybean flour mixture. Afr. J. Food Sci. 2023, 17, 111–121. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A. Effect of fresh beetroot application and processing conditions on some quality features of new type of potato-based snacks. LWT-Food Sci. Technol. 2021, 141, 110919. [Google Scholar] [CrossRef]
- Mitrus, M.; Combrzyński, M.; Biernacka, B.; Wójtowicz, A.; Milanowski, M.; Kupryaniuk, K.; Gancarz, M.; Soja, J.; Różyło, R. Fresh Broccoli in Fortified Snack Pellets: Extrusion-Cooking Aspects and Physical Characteristics. Appl. Sci. 2023, 13, 8138. [Google Scholar] [CrossRef]
- Soja, J.; Combrzyński, M.; Oniszczuk, T.; Gancarz, M.; Oniszczuk, A. Extrusion-Cooking Aspects and Physical Characteristics of Snacks Pellets with Addition of Selected Plant Pomace. Appl. Sci. 2024, 14, 8754. [Google Scholar] [CrossRef]
- Dushkova, M.; Simitchiev, A.; Petrova, T.; Menkov, N.; Desseva, I.; Mihaylova, D. Physical and Functional Characteristics of Extrudates Prepared from Quinoa Enriched with Goji Berry. Appl. Sci. 2023, 13, 3503. [Google Scholar] [CrossRef]
- Drożdż, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of blackcurrant and chokeberry press residue in snack products. Pol. J. Chem. Technol. 2019, 21, 13–19. [Google Scholar] [CrossRef]
- Kowalski, R.; Medina-Meza, I.G.; Thapa, B.B.; Murphy, K.M.; Ganjyal, G.M. Extrusion processing characteristics of quinoa (Chenopodium quinoa Willd.) var. Cherry Vanilla. J. Cereal Sci. 2016, 70, 91–98. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Zhang, J.; Zhang, Y.T.; Sun, J.Y.; Prieto, M.A.; Simal-Gandara, J.; Putnik, P.; Li, N.Y.; Liu, C. The link between the phenolic composition and the antioxidant activity in different small berries: A metabolomic approach. LWT 2023, 182, 114853. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Xiang, J.; Wang, C.; Johnson, J.B.; Beta, T. Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. LWT 2023, 173, 114308. [Google Scholar] [CrossRef]
- MatÉs, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Colak, N.; Primetta, A.K.; Riihinen, K.R.; Jaakola, L.; Grúz, J.; Strnad, M.; Torun, H.; Ayaz, F.A. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.). Food Biosci. 2017, 20, 67–68. [Google Scholar] [CrossRef]
- Carranza-Gomez, M.; Valle-Guadarrama, S.; Domínguez-Puerto, R.; Sandoval-Castilla, O.; Guerra-Ramírez, D. Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation. Processes 2025, 13, 1072. [Google Scholar] [CrossRef]
Raw Materials | Control Sample | 10% of Blueberries | 20% of Blueberries | 30% of Blueberries |
---|---|---|---|---|
fresh blueberries (%) | 0 | 10 | 20 | 30 |
potato starch (%) | 82 | 72 | 62 | 52 |
potato flakes (%) | 15 | 15 | 15 | 15 |
rapeseed oil (%) | 1 | 1 | 1 | 1 |
sugar (%) | 1 | 1 | 1 | 1 |
salt (%) | 1 | 1 | 1 | 1 |
Blueberry Addition [%] | Screw Rotation [rpm] | Moisture [%] | Temperature of Section I [°C] | Temperature of Section II [°C] | Temperature of Section III [°C] | Temperature of Section IV [°C] | Extruder Die [°C] |
---|---|---|---|---|---|---|---|
0 | 60 | 32 | 44.78 ± 0.17 | 67.13 ± 0.29 | 65.95 ± 0.27 | 61.83 ± 0.28 | 62.87 ± 0.32 |
36 | 48.36 ± 0.26 | 65.38 ± 0.10 | 66.64 ± 0.38 | 62.87 ± 0.16 | 64.89 ± 0.28 | ||
100 | 32 | 45.38 ± 0.31 | 68.14 ± 0.40 | 67.42 ± 0.33 | 64.22 ± 0.18 | 63.36 ± 0.11 | |
36 | 49.68 ± 0.35 | 66.21 ± 0.34 | 66.71 ± 0.14 | 62.99 ± 0.24 | 62.60 ± 0.51 | ||
10 | 60 | 32 | 48.63 ± 0.33 | 65.21 ± 0.19 | 66.95 ± 0.39 | 63.13 ± 0.29 | 62.95 ± 0.25 |
36 | 48.67 ± 0.09 | 65.31 ± 0.16 | 66.47 ± 0.14 | 61.58 ± 0.22 | 62.50 ± 0.40 | ||
100 | 32 | 50.14 ± 0.43 | 64.73 ± 0.42 | 67.35 ± 0.31 | 63.12 ± 0.19 | 63.92 ± 0.43 | |
36 | 49.09 ± 0.32 | 65.45 ± 0.21 | 65.90 ± 0.11 | 62.33 ± 0.14 | 64.58 ± 0.41 | ||
30 | 60 | 32 | 47.38 ± 0.33 | 65.50 ± 0.29 | 66.02 ± 0.16 | 62.18 ± 0.26 | 63.85 ± 0.09 |
36 | 48.00 ± 0.22 | 65.21 ± 0.28 | 66.23 ± 0.26 | 62.22 ± 0.13 | 62.08 ± 0.26 | ||
100 | 32 | 47.97 ± 0.11 | 65.15 ± 0.29 | 65.93 ± 0.20 | 62.65 ± 0.06 | 62.70 ± 0.27 | |
36 | 48.22 ± 0.26 | 64.67 ± 0.34 | 66.05 ± 0.50 | 62.30 ± 0.25 | 62.27 ± 0.19 |
No. | Compound | Calibration Curve | R2 |
---|---|---|---|
1 | protocatechuic acid | y = −0.0254426x2 + 1.46612x + 0.0137605 | 0.997 |
2 | p–OH–benzoic acid | y = −0.0116753x2 + 1.43904x + 0.164956 | 0.997 |
3 | vanillic acid | y = 0.000116384x2 + 0.194029x − 0.00311 | 0.998 |
4 | caffeic acid | y = −0.0182712x2 + 2.42109x + 0.436786 | 0.995 |
5 | syryngic acid | y = −0.0000546324x2 + 0.259824x − 0.00264286 | 0.986 |
6 | p–coumaric acid | y = −0.0165714x2 + 2.05818x + 2.05818 | 0.993 |
7 | ferulic acid | y = −0.000407832x2 + 0.380126x + 3.30005 | 0.994 |
8 | synapic acid | y = −0.00315979x2 + 0.55236x − 0.0620381 | 0.998 |
9 | salicylic acid | y = −0.0338427x2 + 3.26378x + 0.82676 | 0.998 |
Blueberry Addition [%] | Screw Rotation [rpm] | Moisture [%] | Q [kg/h] | SME [kWh/kg] |
---|---|---|---|---|
0 | 60 | 32 | 20.08 ± 0.37 bc | 0.038 ± 0.001 c |
36 | 21.84 ± 0.24 cd | 0.034 ± 0.000 bc | ||
100 | 32 | 34.08 ± 1.25 f | 0.016 ± 0.001 abc | |
36 | 36.16 ± 0.28 gh | 0.022 ± 0.000 abc | ||
10 | 60 | 32 | 22.96 ± 0.50 d | 0.009 ± 0.003 ab |
36 | 21.68 ± 0.60 cd | 0.012 ± 0.001 abc | ||
100 | 32 | 37.12 ± 0.14 h | 0.005 ± 0.001 a | |
36 | 34.64 ± 0.97 fg | 0.003 ± 0.000 a | ||
30 | 60 | 32 | 19.12 ± 1.08 b | 0.015 ± 0.013 abc |
36 | 14.40 ± 0.00 a | 0.021 ± 0.022 abc | ||
100 | 32 | 28.88 ± 0.14 d | 0.021 ± 0.018 abc | |
36 | 23.28 ± 0.00 e | 0.017 ± 0.008 abc |
Blueberry Addition [%] | Screw Rotation [rpm] | Moisture [%] | WAI [g/g] | WSI [%] | Bulk Density [kg/m3] | Durability [%] |
---|---|---|---|---|---|---|
0 | 60 | 32 | 3.23 ± 0.00 b | 8.23 ± 0.01 b | 420.70 ± 5.33 d | 98.10 ± 0.12 c |
36 | 3.90 ± 0.01 f | 17.22 ± 0.00 h | 384.64 ± 4.40 b | 97.61 ± 0.31 c | ||
100 | 32 | 3.99 ± 0.01 g | 7.53 ± 0.01 a | 425.23 ± 13.31 d | 98.10 ± 0.12 c | |
36 | 4.07 ± 0.01 h | 18.35 ± 0.01 i | 416.72 ± 5.40 cd | 97.61 ± 0.31 c | ||
10 | 60 | 32 | 3.35 ± 0.01 c | 10.71 ± 0.01 c | 345.07 ± 5.62 a | 96.69 ± 0.31 b |
36 | 3.88 ± 0.01 f | 8.23 ± 0.01 b | 418.96 ± 2.28 cd | 97.61 ± 0.31 c | ||
100 | 32 | 3.53 ± 0.02 d | 16.00 ± 0.01 g | 400.60 ± 10.36 bc | 96.69 ± 0.31 b | |
36 | 3.23 ± 0.01 b | 18.38 ± 0.01 j | 449.51 ± 3.65 e | 97.61 ± 0.31 c | ||
30 | 60 | 32 | 3.51 ± 0.01 d | 12.72 ± 0.00 e | 494.39 ± 2.34 f | 95.46 ± 0.17 a |
36 | 3.66 ± 0.01 e | 13.32 ± 0.01 f | 510.17 ± 1.98 fg | 96.69 ± 0.31 b | ||
100 | 32 | 3.21 ± 0.01 a | 11.27 ± 0.01 k | 526.16 ± 4.87 h | 95.46 ± 0.17 b | |
36 | 2.90 ± 0.01 b | 18.52 ± 0.01 d | 547.37 ± 7.05 g | 96.69 ± 0.31 a |
Blueberry Addition | Production Parameters | Total Phenolic Content [μg GAE/g Dry Weight] |
---|---|---|
0% | 32% sm,60 rpm | 19.1 ± 0.12 a |
0% | 36% sm, 60 rpm | 21.7 ± 0.07 ab |
0% | 32% sm, 100 rpm | 23.1 ± 0.06 ab |
0% | 36% sm, 100 rpm | 21.8 ± 0.05 ab |
10% | 32% sm, 60 rpm | 43.2 ± 0.11 c |
10% | 36% sm, 60 rpm | 40.6 ± 1.11 c |
10% | 32% sm, 100 rpm | 35.2 ± 0.99 bc |
10% | 36% sm, 100 rpm | 43.2 ± 0.89 c |
30% | 32% sm, 60 rpm | 106.4 ± 10.12 de |
30% | 36% sm, 60 rpm | 102.4 ± 9.71 d |
30% | 32% sm, 100 rpm | 113.0 ± 7.77 de |
30% | 36% sm, 100 rpm | 117.0 ± 5.65 e |
Sample | Content of Phenolic Acids (μg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Protocatechuic | p-OH-Benzoic | Vanilic | Caffeic | Syryngic | p-Coumaric | Ferulic | Synapic | Salicylic | |
Functional food sample | 3.154 ± 2.18 | LOQ | 1.151 ± 0.21 | 81.09 ± 8.75 | 11.238 ± 1.67 | 2.719 ± 0.35 | 9.1 ± 0.79 | 3.466 ± 0.14 | 0.307 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Combrzyński, M.; Soja, J.; Oniszczuk, T.; Wojtunik-Kulesza, K.; Kręcisz, M.; Mołdoch, J.; Biernacka, B. The Impact of Fresh Blueberry Addition on the Extrusion-Cooking Process, Physical Properties and Antioxidant Potential of Potato-Based Snack Pellets. Appl. Sci. 2025, 15, 5112. https://doi.org/10.3390/app15095112
Combrzyński M, Soja J, Oniszczuk T, Wojtunik-Kulesza K, Kręcisz M, Mołdoch J, Biernacka B. The Impact of Fresh Blueberry Addition on the Extrusion-Cooking Process, Physical Properties and Antioxidant Potential of Potato-Based Snack Pellets. Applied Sciences. 2025; 15(9):5112. https://doi.org/10.3390/app15095112
Chicago/Turabian StyleCombrzyński, Maciej, Jakub Soja, Tomasz Oniszczuk, Karolina Wojtunik-Kulesza, Magdalena Kręcisz, Jarosław Mołdoch, and Beata Biernacka. 2025. "The Impact of Fresh Blueberry Addition on the Extrusion-Cooking Process, Physical Properties and Antioxidant Potential of Potato-Based Snack Pellets" Applied Sciences 15, no. 9: 5112. https://doi.org/10.3390/app15095112
APA StyleCombrzyński, M., Soja, J., Oniszczuk, T., Wojtunik-Kulesza, K., Kręcisz, M., Mołdoch, J., & Biernacka, B. (2025). The Impact of Fresh Blueberry Addition on the Extrusion-Cooking Process, Physical Properties and Antioxidant Potential of Potato-Based Snack Pellets. Applied Sciences, 15(9), 5112. https://doi.org/10.3390/app15095112