Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection
2.4. CO2 Consumption
2.5. Life Cycle Assessment
2.5.1. Raw Material Extraction and Manufacturing
2.5.2. Use Phase
2.5.3. End-of-Life Disposal and Reusability
2.6. Surgical Procedure
2.7. Statistical Analysis
3. Results
3.1. Partial Nephrectomy
3.2. Radical Nephrectomy
3.3. Total CO2 Emissions
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
CI | Confidence Interval |
CF | Carbon Footprint |
CO2 | Carbon Dioxide |
DM | Diabetes Mellitus |
EBL | Estimated Blood Loss |
eGFR | Estimated Glomerular Filtration Rate |
GHG | Greenhouse Gas |
Hb | Hemoglobin |
ICOT | Urology Department of ICOT in Latina |
ISO | International Organization for Standardization |
LCA | Life Cycle Assessment |
LPN | Laparoscopic Partial Nephrectomy |
LRN | Laparoscopic Radical Nephrectomy |
MIS | Minimally Invasive Surgery |
MS | Metabolic Syndrome |
NHS | National Health Service |
OR | Operating Room |
PN | Partial Nephrectomy |
RAPN | Robot-Assisted Partial Nephrectomy |
RARN | Robot-Assisted Radical Nephrectomy |
RENAL | Radius, Exophytic/Endophytic, Nearness, Anterior/Posterior, Location Scoring System |
RN | Radical Nephrectomy |
SD | Standard Deviation |
SPSS | Statistical Package for the Social Sciences |
T | Tumor Staging |
UK | United Kingdom |
US | United States |
USA | United States of America |
USD | United States Dollar |
References
- Reddy, K.; Gharde, P.; Tayade, H.; Patil, M.; Reddy, L.S.; Surya, D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus 2023, 15, e50415. [Google Scholar] [CrossRef] [PubMed]
- van der Vliet, W.J.; Haenen, S.M.; Solis-Velasco, M.; Dejong, C.H.C.; Neumann, U.P.; Moser, A.J.; van Dam, R.M. Systematic review of team performance in minimally invasive abdominal surgery. BJS Open 2019, 3, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Rafaqat, W.; Ahmad, T.; Ibrahim, M.T.; Kumar, S.; Bluman, E.M.; Khan, K.S. Is minimally invasive orthopedic surgery safer than open? A systematic review of systematic reviews. Int. J. Surg. 2022, 101, 106616. [Google Scholar] [CrossRef] [PubMed]
- Fuschi, A.; Al Salhi, Y.; Sequi, M.B.; Velotti, G.; Martoccia, A.; Suraci, P.P.; Scalzo, S.; Asimakopoulos, A.; Bozzini, G.; Zucchi, A.; et al. Evaluation of Functional Outcomes and Quality of Life in Elderly Patients (>75 y.o.) Undergoing Minimally Invasive Radical Cystectomy with Single Stoma Ureterocutaneostomy vs. Bricker Intracorporeal Ileal Conduit Urinary Diversion. J. Clin. Med. 2021, 11, 136. [Google Scholar] [CrossRef]
- Finegersh, A.; Holsinger, F.C.; Gross, N.D.; Orosco, R.K. Robotic Head and Neck Surgery. Surg. Oncol. Clin. N. Am. 2019, 28, 115–128. [Google Scholar] [CrossRef]
- Rizan, C.; Bhutta, M.F. Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus single-use equivalents in laparoscopic cholecystectomy. Surg. Endosc. 2022, 36, 4067–4078. [Google Scholar] [CrossRef] [PubMed]
- Chahal, B.; Aydin, A.; Amin, M.S.A.; Khan, A.; Khan, M.S.; Ahmed, K.; Dasgupta, P. The learning curves of major laparoscopic and robotic procedures in urology: A systematic review. Int. J. Surg. 2023, 109, 2037–2057. [Google Scholar] [CrossRef]
- Picozzi, P.; Nocco, U.; Labate, C.; Gambini, I.; Puleo, G.; Silvi, F.; Pezzillo, A.; Mantione, R.; Cimolin, V. Advances in Robotic Surgery: A Review of New Surgical Platforms. Electronics 2024, 13, 4675. [Google Scholar] [CrossRef]
- Chughtai, B.; Scherr, D.; Del Pizzo, J.; Herman, M.; Barbieri, C.; Mao, J.; Isaacs, A.; Lee, R.; Te, A.E.; Kaplan, S.A.; et al. National Trends and Cost of Minimally Invasive Surgery in Urology. Urol. Pract. 2015, 2, 49–54. [Google Scholar] [CrossRef]
- Capretti, G.; Boggi, U.; Salvia, R.; Belli, G.; Coppola, R.; Falconi, M.; Valeri, A.; Zerbi, A. Application of minimally invasive pancreatic surgery: An Italian survey. Updates Surg. 2019, 71, 97–103. [Google Scholar] [CrossRef]
- Batchelder, A.J.; Williams, R.; Sutton, C.; Khanna, A. The evolution of minimally invasive bariatric surgery. J. Surg. Res. 2013, 183, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Elhage, S.; Schiffern, L.; Lauren Paton, B.; Ross, S.W.; Matthews, B.D.; Reinke, C.E. Use of minimally invasive surgery in emergency general surgery procedures. Surg. Endosc. 2020, 34, 2258–2265. [Google Scholar] [CrossRef]
- Stojko, R.; Sadlocha, M. Minimally invasive surgery in gynecology. Reconciling the past with a view to the future. Ginekol. Pol. 2022, 93, 859–860. [Google Scholar] [CrossRef]
- Health Care without Harm. Health Care’s Climate Footprint. Climate-Smart Health Care Series Green Paper Number One (2019). Available online: https://noharm-uscanada.org (accessed on 15 October 2023).
- Rizan, C.; Steinbach, I.; Nicholson, R.; Lillywhite, R.; Reed, M.; Bhutta, M.F. The Carbon Footprint of Surgical Operations: A Systematic Review. Ann. Surg. 2020, 272, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, S.; Dettmer, T.; Kara, S.; Herrmann, C. Eco-efficiency of disposable and reusable surgical instruments—A scissors case. Int. J. Life Cycle Assess. 2013, 18, 1137–1148. [Google Scholar] [CrossRef]
- Overcash, M. A comparison of reusable and disposable perioperative textiles: Sustainability state-of-the-art 2012. Anesth. Analg. 2012, 114, 1055–1066. [Google Scholar] [CrossRef]
- McPherson, B.; Sharip, M.; Grimmond, T. The impact on life cycle carbon footprint of converting from disposable to reusable sharps containers in a large US hospital geographically distant from manufacturing and processing facilities. PeerJ 2019, 7, e6204. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Dettenkofer, M.; Scherrer, M. Comparison of reusable and disposable laparatomy pads. Int. J. Life Cycle Assess. 1996, 1, 67–73. [Google Scholar] [CrossRef]
- McGain, F.; McAlister, S.; McGavin, A.; Story, D. The financial and environmental costs of reusable and single-use plastic anaesthetic drug trays. Anaesth. Intensive Care 2010, 38, 538–544. [Google Scholar] [CrossRef]
- Eckelman, M.; Mosher, M.; Gonzalez, A.; Sherman, J. Comparative life cycle assessment of disposable and reusable laryngeal mask airways. Anesth. Analg. 2012, 114, 1067–1072. [Google Scholar] [CrossRef]
- Sherman, J.D.; Raibley, L.A.t.; Eckelman, M.J. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes. Anesth. Analg. 2018, 127, 434–443. [Google Scholar] [CrossRef]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 17 January 2023).
- Karali, N.; Khanna, N.; Shah, N. Climate Impact of Primary Plastic Production; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2024. [Google Scholar]
- Sun, Y.; Kojima, S.; Nakaohkubo, K.; Zhao, J.; Ni, S. Analysis and Evaluation of Indoor Environment, Occupant Satisfaction, and Energy Consumption in General Hospital in China. Buildings 2023, 13, 1675. [Google Scholar] [CrossRef]
- McGain, F.; McAlister, S. Correction: Reusable versus single-use ICU equipment: What’s the environmental footprint? Intensive Care Med. 2024, 50, 156. [Google Scholar] [CrossRef] [PubMed]
- Pichler, P.-P.; Jaccard, I.S.; Weisz, U.; Weisz, H. International comparison of health care carbon footprints. Environ. Res. Lett. 2019, 14, 064004. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Sherman, J. Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLoS ONE 2016, 11, e0157014. [Google Scholar] [CrossRef]
- SDC. NHS England Carbon Emissions: Carbon Footprinting Study; Sustainable Development Commission: London, UK, 2008. [Google Scholar]
- Tennison, I.; Roschnik, S.; Ashby, B.; Boyd, R.; Hamilton, I.; Oreszczyn, T.; Owen, A.; Romanello, M.; Ruyssevelt, P.; Sherman, J.D.; et al. Health care’s response to climate change: A carbon footprint assessment of the NHS in England. Lancet Planet. Health 2021, 5, e84–e92. [Google Scholar] [CrossRef]
- Vogel, L. Canada’s health system is among the least green. CMAJ Can. Med. Assoc. J. 2019, 191, E1342–E1343. [Google Scholar] [CrossRef]
- Connor, A.; Lillywhite, R.; Cooke, M.W. The carbon footprints of home and in-center maintenance hemodialysis in the United Kingdom. Hemodial. Int. Int. Symp. Home Hemodial. 2011, 15, 39–51. [Google Scholar] [CrossRef]
- Connor, A.; Lillywhite, R.; Cooke, M.W. The carbon footprint of a renal service in the United Kingdom. QJM Mon. J. Assoc. Physicians 2010, 103, 965–975. [Google Scholar] [CrossRef]
- Pradere, B.; Mallet, R.; de La Taille, A.; Bladou, F.; Prunet, D.; Beurrier, S.; Bardet, F.; Game, X.; Fournier, G.; Lechevallier, E.; et al. Climate-smart Actions in the Operating Theatre for Improving Sustainability Practices: A Systematic Review. Eur. Urol. 2023, 83, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Kloevekorn, L.; Roemeling, O.; Fakha, A.; Hage, E.; Smailhodzic, E. Decarbonizing surgical care: A qualitative systematic review guided by the Congruence Model. BMC Health Serv. Res. 2024, 24, 1456. [Google Scholar] [CrossRef]
- MacNeill, A.J.; Lillywhite, R.; Brown, C.J. The impact of surgery on global climate: A carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 2017, 1, e381–e388. [Google Scholar] [CrossRef] [PubMed]
- Fuschi, A.; Pastore, A.L.; Al Salhi, Y.; Martoccia, A.; De Nunzio, C.; Tema, G.; Rera, O.A.; Carbone, F.; Asimakopoulos, A.D.; Sequi, M.B.; et al. The impact of radical prostatectomy on global climate: A prospective multicentre study comparing laparoscopic versus robotic surgery. Prostate Cancer Prostatic Dis. 2024, 27, 272–278. [Google Scholar] [CrossRef]
- Thiel, C.L.; Woods, N.C.; Bilec, M.M. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery. Am. J. Public Health 2018, 108, S158–S164. [Google Scholar] [CrossRef] [PubMed]
- Wormer, B.A.; Augenstein, V.A.; Carpenter, C.L.; Burton, P.V.; Yokeley, W.T.; Prabhu, A.S.; Harris, B.; Norton, S.; Klima, D.A.; Lincourt, A.E.; et al. The green operating room: Simple changes to reduce cost and our carbon footprint. Am. Surg. 2013, 79, 666–671. [Google Scholar] [CrossRef]
- Morris, D.S.; Wright, T.; Somner, J.E.; Connor, A. The carbon footprint of cataract surgery. Eye 2013, 27, 495–501. [Google Scholar] [CrossRef]
- Digital, N. Hospital Admitted Patient Care Activity, 2019–2020; NHS Digital: Leeds, UK, 2020. [Google Scholar]
- Slingo, J.M.; Slingo, M.E. The science of climate change and the effect of anaesthetic gas emissions. Anaesthesia 2024, 79, 252–260. [Google Scholar] [CrossRef]
Partial Nephrectomy Subgroup | Radical Nephrectomy Subgroup | |||||||
---|---|---|---|---|---|---|---|---|
Group A | Group B | p-Value | Difference (95% CI) | Group C | Group D | p-Value | Difference (95% CI) | |
Number of patients | 41 | 38 | 0.63 | - | 40 | 43 | 0.56 | - |
Age, years (SD) | 61.2 (11.7) | 62.5 (13.8) | 0.34 | −1.3 (−6.96 to 4.36) | 62.9 (10.8) | 63.4 (8.6) | 0.38 | −0.5 (−4.72 to 3.72) |
Male, % | 63.4 | 68.4 | 0.52 | −5.0 (−25.9 to 15.9) | 62.5 | 69.7 | 0.61 | −7.2 (−27.5 to 13.1) |
Preoperative Hb, g/dL (SD) | 14.7 (1.4) | 14.2 (1.1) | 0.19 | 0.5 (−0.05 to 1.05) | 13.9 (0.9) | 14.3 (1.5) | 0.22 | −0.4 (−0.93 to 0.13) |
BMI, kg/m2 (SD) | 25.52 (2.46) | 25.19 (2.74) | 0.71 | 0.33 (−0.82 to 1.48) | 25.8 (2.6) | 25.32 (1.98) | 0.41 | 0.48 (−0.52 to 1.48) |
DM, % | 36.6 | 36.8 | 0.44 | 0.2 (−21.5 to 21.1) | 35 | 37.2 | 0.38 | −2.2 (−22.9 to 18.5) |
MS, % | 41.4 | 44.7 | 0.21 | −3.3 (−25.1 to 18.5) | 40 | 44.2 | 0.13 | −4.2 (−25.4 to 17.0) |
Preoperative eGFR mL/min/1.73 m2 (SD) | 82.5 (20.3) | 79.7 (18.7) | 0.42 | 2.8 (−5.8 to 11.4) | 81.2 (20.0) | 83.7 (16.3) | 0.31 | −2.5 (−10.38 to 5.38) |
RENAL score | ||||||||
Low (4–6), % | 34.1 (14) | 44.7 (17) | 0.08 | −10.6 (−32.1 to 10.9) | 0 | 0 | N/A | N/A |
Moderate (7–9), % | 43.9 (18) | 39.5 (15) | 0.13 | 4.4 (−17.3 to 26.1) | 17.5 | 20.9 | 0.22 | −3.4 (−20.3 to 13.5) |
High (10–12), % | 22 (9) | 15.8 (6) | 0.09 | 6.2 (−11.0 to 23.4) | 82.5 | 79.1 | 0.39 | 3.4 (−13.5 to 20.3) |
T | ||||||||
T1a, % | 26.8 | 34.2 | 0.41 | −7.4 (−27.7 to 12.9) | 0 | 0 | N/A | N/A |
T1b, % | 53.6 | 55.3 | 0.53 | −1.7 (−23.7 to 20.3) | 0 | 0 | N/A | N/A |
T2a, % | 14.7 | 10.5 | 0.31 | 4.2 (−10.4 to 18.8) | 32.5 | 30.3 | 0.48 | 2.2 (−17.8 to 22.2) |
T2b, % | 4.9 | 0 | 0.04 | 4.9 (−1.7 to 11.5) | 47.5 | 48.8 | 0.37 | −1.3 (−22.8 to 20.2) |
T3a, % | 0 | 0 | N/A | N/A | 20 | 20.9 | 0.63 | −0.9 (−18.3 to 16.5) |
Operative Time, min (SD) | 110.4 (35.7) | 124.8 (38.1) | 0.04 | −14.4 (−30.71 to 1.91) | 121.8 (41.1) | 132.6 (49.4) | 0.4 | −10.8 (−30.3 to 8.7) |
Estimated Blood Loss, mL (SD) | 199.4 (68.1) | 220.8 (66.6) | 0.03 | −21.4 (−51.11 to 8.31) | 162.3 (38.1) | 192.6 (63.2) | 0.22 | −30.3 (−52.58 to −8.02) |
Mean Hb drop, g/dL (SD) | 2.0 (0.8) | 2.7 (1.1) | 0.07 | −0.7 (−1.13 to −0.27) | 1.7 (0.4) | 2.1 (0.7) | 0.3 | −0.4 (−0.64 to −0.16) |
Postoperative eGFR mL/min/1.73 m2 at discharge (SD) | 80.4 (26.7) | 79.2 (22.6) | 0.32 | 1.2 (−9.68 to 12.08) | 74.2 (21.9) | 73.2 (21.5) | 0.41 | 1.0 (−8.35 to 10.35) |
Hospital stay, days (SD) | 2.36 (0.4) | 2.64 (0.7) | 0.14 | −0.28 (−0.53 to −0.03) | 2.26 (0.3) | 2.47 (0.5) | 0.07 | −0.21 (−0.39 to −0.03) |
Group A | Group B | p-Value | Difference (95% CI) | |
---|---|---|---|---|
Weight, g | ||||
Plastics | 1225.2 | 1288.2 | 0.3 | −63.0 (−173.19 to 47.19) |
Metal | 225.5 | 152.5 | 0.07 | 73.0 (56.13 to 89.87) |
Composite fiber | 185.2 | 133.2 | 0.15 | 52.0 (37.86 to 66.14) |
Total | 1669.4 | 1637.4 | 0.21 | 32.0 (−112.93 to 176.93) |
CO2 Emissions, kg | ||||
Plastics | 6.14 | 8.37 | 0.01 | −2.23 (−2.87 to −1.59) |
Metal | 0.82 | 1.03 | 0.4 | −0.21 (−0.29 to −0.13) |
Composite fiber | 2.07 | 2.73 | 0.16 | −0.66 (−0.87 to −0.45) |
Total | 9.04 | 12.14 | 0.02 | −3.1 (−4.04 to −2.16) |
Group A | Group B | p-Value | Difference (CI) | ||||||
---|---|---|---|---|---|---|---|---|---|
kW/h | Time, Hours | Kg of CO2 | kW/h | Time, Hours | Kg of CO2 | ||||
Robotic column | 3.5 | 1.84 | 2.27 | Laparoscopic column | 0.6 | 2.08 | 0.44 | 0.001 | 1.83 (1.69 to 1.97) |
Hospital room winter 20 m2 20 °C | 0.6 | 56.6 | 11.97 | Hospital room winter 20 m2 20 °C | 0.6 | 62.3 | 13.17 | 0.06 | −1.2 (−2.3 to −0.1) |
Hospital room 20 m2 summer 28 °C | 0.75 | 56.6 | 14.97 | Hospital room 20 m2 summer 28 °C | 0.75 | 62.3 | 16.46 | 0.04 | −1.49 (−2.87 to −0.11) |
OR 18/24 °C 120 m2 | 3 | 2.74 | 2.89 | OR 18/24 °C 120 m2 | 3 | 3.1 | 3.27 | 0.07 | −0.38 (−0.65 to −0.11) |
Total CO2 Emissions | 32.1 | Total CO2 Emissions | 33.34 | 0.06 | −1.24 (−4.11 to 1.63) |
Group C | Group D | p-Value | Difference (CI) | |
---|---|---|---|---|
Weight, g | ||||
Plastics | 1130.2 | 1188.2 | 0.31 | −58.0 (−159.64 to 43.64) |
Metal | 182.64 | 147 | 0.09 | 35.64 (21.11 to 50.17) |
Composite fiber | 154.25 | 133.25 | 0.19 | 21.0 (8.37 to 33.63) |
Total | 1471.09 | 1501.45 | 0.26 | −30.36 (−160.64 to 99.92) |
CO2 Emissions, kg | ||||
Plastics | 5.9 | 7.72 | 0.02 | −1.82 (−2.42 to −1.22) |
Metal | 0.8 | 0.99 | 0.34 | −0.19 (−0.27 to −0.11) |
Composite fiber | 2.04 | 2.74 | 0.06 | −0.7 (−0.91 to −0.49) |
Total | 8.74 | 11.45 | 0.03 | −2.71 (−3.6 to −1.82) |
Group C | Group D | p-Value | Difference (CI) | ||||||
---|---|---|---|---|---|---|---|---|---|
kW/h | Time, Hours | Kg of CO2 | kW/h | Time, Hours | Kg of CO2 | ||||
Robotic column | 3.5 | 2.03 | 2.5 | Laparoscopic column | 0.6 | 2.21 | 0.47 | 0.001 | 2.03 (1.87 to 2.19) |
Hospital room winter 20 m2 20 °C | 0.6 | 54.3 | 11.48 | Hospital room winter 20 m2 20 °C | 0.6 | 59.4 | 12.56 | 0.05 | −1.08 (−2.13 to −0.03) |
Hospital room 20 m2 summer 28 °C | 0.75 | 54.3 | 14.35 | Hospital room 20 m2 summer 28 °C | 0.75 | 59.4 | 15.8 | 0.04 | −1.45 (−2.77 to −0.13) |
OR 18/24 °C 120 m2 | 3 | 2.9 | 3.06 | OR 18/24 °C 120 m2 | 3 | 3.19 | 3.37 | 0.11 | −0.31 (−0.59 to −0.03) |
Total CO2 Emissions | 31.39 | Total CO2 Emissions | 32.2 | 0.07 | −0.81 (−3.6 to 1.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuschi, A.; Al Salhi, Y.; Pastore, A.L.; Sequi, M.B.; De Nunzio, C.; Lombardo, R.; Rera, O.A.; Carbone, F.; Asimakopoulos, A.D.; Valenzi, F.M.; et al. Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches. Appl. Sci. 2025, 15, 5079. https://doi.org/10.3390/app15095079
Fuschi A, Al Salhi Y, Pastore AL, Sequi MB, De Nunzio C, Lombardo R, Rera OA, Carbone F, Asimakopoulos AD, Valenzi FM, et al. Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches. Applied Sciences. 2025; 15(9):5079. https://doi.org/10.3390/app15095079
Chicago/Turabian StyleFuschi, Andrea, Yazan Al Salhi, Antonio Luigi Pastore, Manfredi Bruno Sequi, Cosimo De Nunzio, Riccardo Lombardo, Onofrio Antonio Rera, Flavia Carbone, Anastasios D. Asimakopoulos, Fabio Maria Valenzi, and et al. 2025. "Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches" Applied Sciences 15, no. 9: 5079. https://doi.org/10.3390/app15095079
APA StyleFuschi, A., Al Salhi, Y., Pastore, A. L., Sequi, M. B., De Nunzio, C., Lombardo, R., Rera, O. A., Carbone, F., Asimakopoulos, A. D., Valenzi, F. M., Suraci, P. P., Antonioni, A., Nardecchia, S., Bozzini, G., Corsini, A., Graziani, D., Candita, G., Gianfrancesco, F., Martino, G., ... Carbone, A. (2025). Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches. Applied Sciences, 15(9), 5079. https://doi.org/10.3390/app15095079