Effects of Drumming-Based Cognitive and Physical Training on Cognitive Performance and Brain Activity in Older Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Study Design
2.2. Participants
2.3. Materials
2.4. Task and Design
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Tan, Y.; Zhang, Z.; Yi, M.; Zhu, L.; Peng, W. The interaction between ageing and Alzheimer’s disease: Insights from the hallmarks of ageing. Transl. Neurodegener. 2024, 13, 7. [Google Scholar] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- James, C.E.; Müller, D.M.; Müller, C.A.; Van de Looij, Y.; Altenmuller, E.; Kliegel, M.; Van De Ville, D.; Marie, D. Randomized controlled trials of non-pharmacological interventions for healthy seniors: Effects on cognitive decline, brain plasticity and activities of daily living—A 23-year scoping review. Heliyon 2024, 10, e26674. [Google Scholar] [CrossRef]
- Castellote-Caballero, Y.; Carcelén Fraile, M.D.C.; Aibar-Almazán, A.; Afanador-Restrepo, D.F.; González-Martín, A.M. Effect of combined physical–cognitive training on the functional and cognitive capacity of older people with mild cognitive impairment: A randomized controlled trial. BMC Med. 2024, 22, 281. [Google Scholar]
- Lampit, A.; Hallock, H.; Valenzuela, M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med. 2014, 11, e1001756. [Google Scholar] [CrossRef]
- Wu, Y.; Zang, M.; Wang, B.; Guo, W. Does the combination of exercise and cognitive training improve working memory in older adults? A systematic review and meta-analysis. PeerJ 2023, 11, e15108. [Google Scholar]
- Erickson, K.I.; Colcombe, S.J.; Wadhwa, R.; Bherer, L.; Peterson, M.S.; Scalf, P.E.; Kim, J.S.; Alvarado, M.; Kramer, A.F. Training-induced functional activation changes in dual-task processing: An FMRI study. Cereb. Cortex 2007, 17, 192–204. [Google Scholar]
- Adcock, M.; Fankhauser, M.; Post, J.; Lutz, K.; Zizlsperger, L.; Luft, A.R.; Guimarães, V.; Schättin, A.; de Bruin, E.D. Effects of an in-home multicomponent exergame training on physical functions, cognition, and brain volume of older adults: A randomized controlled trial. Front. Med. 2020, 6, 321. [Google Scholar]
- Nam, Y.-G.; Kwon, B.-S. Prefrontal cortex activation during memory training by virtual drum beating: A randomized controlled trial. Healthcare 2023, 11, 2559. [Google Scholar] [CrossRef]
- Saarman, E. Feeling the beat: Symposium explores the therapeutic effects of rhythmic music. Stanford News, 3 May 2006. [Google Scholar]
- Bengtsson, S.L.; Ullen, F.; Ehrsson, H.H.; Hashimoto, T.; Kito, T.; Naito, E.; Forssberg, H.; Sadato, N. Listening to rhythms activates motor and premotor cortices. Cortex 2009, 45, 62–71. [Google Scholar]
- Deyo, L.J. Cognitive Functioning of Drumming and Rhythm Therapy for Neurological Disorders. 2016. Available online: https://trace.tennessee.edu/utk_chanhonoproj/1983 (accessed on 1 May 2025).
- Moberly, A.C.; Pisoni, D.B.; Harris, M.S. Visual working memory span in adults with cochlear implants: Some preliminary findings. World J. Otorhinolaryngol.-Head Neck Surg. 2017, 3, 224–230. [Google Scholar] [PubMed]
- Pietschnig, J.; Voracek, M.; Formann, A.K. Mozart effect–Shmozart effect: A meta-analysis. Intelligence 2010, 38, 314–323. [Google Scholar]
- Fancourt, D.; Perkins, R.; Ascenso, S.; Carvalho, L.A.; Steptoe, A.; Williamon, A. Effects of group drumming interventions on anxiety, depression, social resilience, and inflammatory immune response among mental health service users. PLoS ONE 2016, 11, e0151136. [Google Scholar] [CrossRef]
- Nouchi, R.; Taki, Y.; Takeuchi, H.; Hashizume, H.; Nozawa, T.; Sekiguchi, A.; Nouchi, H.; Kawashima, R. Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: Study protocol for a randomized controlled trial. Trials 2012, 13, 200. [Google Scholar]
- Kramer, A.F.; Colcombe, S.J.; McAuley, E.; Scalf, P.E.; Erickson, K.I. Fitness, aging and neurocognitive function. Neurobiol. Aging 2005, 26, 124–127. [Google Scholar] [PubMed]
- McAuley, E.; Kramer, A.F.; Colcombe, S.J. Cardiovascular fitness and neurocognitive function in older adults: A brief review. Brain Behav. Immun. 2004, 18, 214–220. [Google Scholar]
- Cho, T.H.; Nah, Y.; Park, S.H.; Han, S. Prefrontal cortical activation in Internet Gaming Disorder Scale high scorers during actual real-time internet gaming: A preliminary study using fNIRS. J. Behav. Addict. 2022, 11, 492–505. [Google Scholar]
- Kringelbach, M.L. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6, 691–702. [Google Scholar]
- Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 2004, 72, 341–372. [Google Scholar]
- Schoenbaum, G.; Roesch, M.R.; Stalnaker, T.A. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006, 29, 116–124. [Google Scholar]
- Cabeza, R.; Anderson, N.D.; Locantore, J.K.; McIntosh, A.R. Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage 2002, 17, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Nashiro, K.; Sakaki, M.; Braskie, M.N.; Mather, M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol. Aging 2017, 54, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Robbins, T.W.; Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 1996, 380, 69–72. [Google Scholar] [CrossRef]
- Keeler, J.F.; Robbins, T.W. Translating cognition from animals to humans. Biochem. Pharm. 2011, 81, 1356–1366. [Google Scholar] [CrossRef]
- Hampshire, A.; Owen, A.M. Fractionating attentional control using event-related fMRI. Cereb. Cortex. 2006, 16, 1679–1689. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.J.; Anderson, M.C. Purging of memories from conscious awareness tracked in the human brain. J. Neurosci. 2012, 32, 16785–16794. [Google Scholar] [CrossRef]
- Schmitz, T.W.; Correia, M.M.; Ferreira, C.S.; Prescot, A.P.; Anderson, M.C. Hippocampal GABA enables inhibitory control over unwanted thoughts. Nat. Commun. 2017, 8, 1311. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. The functions of the orbitofrontal cortex. Brain Cogn. 2004, 55, 11–29. [Google Scholar] [CrossRef]
- Park, D.C.; Bischof, G.N. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 2013, 15, 109–119. [Google Scholar] [CrossRef]
Measure | Control Group (n = 20) | Experimental Group (n = 20) | p-Value |
---|---|---|---|
Sex, n (%) | |||
Male | 6 (30.0%) | 2 (10.0%) | 0.236 * |
Female | 14 (70.0%) | 18 (90.0%) | |
Age, years, mean (SD) | 62.95 (5.76) | 63.75 (4.09) | 0.61563 # |
Height, cm, mean (SD) | 164.45 (7.69) | 159.80 (5.91) | 0.0385 # |
Weight, kg, mean (SD) | 61.25 (7.89) | 58.25 (6.34) | 0.193 # |
Pre MMSE 1, mean (SD) | 27.25 (2.57) | 27.00 (1.52) | 0.7104 # |
Control Group (n = 20) | Experimental Group (n = 20) | p-Value Between Groups | |||||||
---|---|---|---|---|---|---|---|---|---|
Measure | Pre Mean (SD) | Post, Mean (SD) | Difference Mean, (SD) | p-Value | Pre, Mean (SD) | Post, Mean (SD) | Difference, Mean, (SD) | p-Value | |
Correct Answers | 33.60 (4.35) | 36.95 (9.29) | 3.35 (7.81) | 0.070 | 34.45 (10.11) | 44.80 (5.99) | 10.35 (10.88) | 0.000 | 0.024 |
Total Training Attempts | 49.40 (7.47) | 53.35 (9.00) | 3.95 (9.15) | 0.068 | 52.70 (6.76) | 52.95 (5.73) | 0.25 (6.21) | 0.859 | 0.142 |
Success Rate | 68.52 (6.00) | 68.31 (12.35) | −0.21 (12.88) | 0.943 | 65.16 (17.38) | 84.59 (6.17) | 19.44 (17.84) | 0.000 | 0.000 |
Time to Highest Level | 511.00 (187.37) | 273.45 (90.09) | −237.55 (237.29) | 0.000 | 486.55 (338.64) | 123.60 (94.17) | −362.95 (284.94) | 0.000 | 0.138 |
MMSE 1 | 27.25 (2.57) | 28.80 (1.44) | 1.55 (1.64) | 0.000 | 27.00 (1.52) | 28.95 (1.15) | 1.95 (1.28) | 0.000 | 0.394 |
GDS * | 5.00 (4.96) | 5.25 (5.11) | 0.25 (1.62) | 0.498 | 8.50 (5.41) | 8.05 (6.01) | −0.45 (3.39) | 0.560 | 0.410 |
Intervention of First Visits, Mean (SD) | Intervention of Final Visits, Mean (SD) | |||||
---|---|---|---|---|---|---|
Brain Region | Experimental | Control | p-value | Experimental | Control | p-value |
Region 1 | −0.10 (1.34) | −0.30 (1.06) | 0.606 | 0.52 (1.48) | 1.22 (0.82) | 0.074 |
Region 2 | 0.34 (1.10) | −0.20 (1.39) | 0.180 | 0.58 (1.17) | 0.80 (1.63) | 0.627 |
Region 3 | −0.34 (1.89) | −0.11 (0.65) | 0.608 | 0.54 (1.56) | 0.48 (0.99) | 0.891 |
Region 4 | −0.25 (0.74) | −0.39 (1.10) | 0.636 | 0.68 (0.82) | 0.71 (1.07) | 0.930 |
Region 5 | 0.48 (0.75) | 0.03 (0.72) | 0.060 | 0.01 (0.65) | 0.25 (1.00) | 0.364 |
Region 6 | 0.09 (1.48) | −0.08 (0.67) | 0.635 | 0.32 (1.23) | 0.50 (1.12) | 0.627 |
Region 7 | −0.29 (1.06) | −0.47 (0.73) | 0.525 | 0.50 (0.89) | 0.73 (1.23) | 0.512 |
Region 8 | 0.18 (1.92) | −0.34 (0.77) | 0.268 | 0.15 (2.33) | 0.48 (1.32) | 0.589 |
Region 9 | 0.01 (1.25) | −0.18 (0.87) | 0.581 | 0.13 (1.37) | −0.01 (1.00) | 0.724 |
Region 10 | −0.44 (0.98) | −0.49 (1.01) | 0.886 | 0.66 (0.93) | 0.72 (1.42) | 0.857 |
Region 11 | −0.15 (0.79) | −0.29 (1.07) | 0.636 | 0.36 (0.85) | 0.25 (0.96) | 0.702 |
Region 12 | −0.22 (0.76) | −0.55 (0.76) | 0.171 | 0.23 (0.84) | 0.45 (0.84) | 0.427 |
Region 13 | −0.43 (0.68) | −0.74 (0.57) | 0.124 | 0.56 (0.54) | 1.03 (1.06) | 0.086 |
Region 14 | 0.39 (1.83) | −0.10 (0.83) | 0.279 | −0.12 (2.14) | 0.73 (1.19) | 0.128 |
Region 15 | −0.14 (1.28) | −0.51 (1.18) | 0.343 | 0.51 (1.34) | 1.61 (1.69) | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, Y.-G.; Kwon, B.-S. Effects of Drumming-Based Cognitive and Physical Training on Cognitive Performance and Brain Activity in Older Adults: A Randomized Controlled Trial. Appl. Sci. 2025, 15, 5062. https://doi.org/10.3390/app15095062
Nam Y-G, Kwon B-S. Effects of Drumming-Based Cognitive and Physical Training on Cognitive Performance and Brain Activity in Older Adults: A Randomized Controlled Trial. Applied Sciences. 2025; 15(9):5062. https://doi.org/10.3390/app15095062
Chicago/Turabian StyleNam, Yeon-Gyo, and Bum-Sun Kwon. 2025. "Effects of Drumming-Based Cognitive and Physical Training on Cognitive Performance and Brain Activity in Older Adults: A Randomized Controlled Trial" Applied Sciences 15, no. 9: 5062. https://doi.org/10.3390/app15095062
APA StyleNam, Y.-G., & Kwon, B.-S. (2025). Effects of Drumming-Based Cognitive and Physical Training on Cognitive Performance and Brain Activity in Older Adults: A Randomized Controlled Trial. Applied Sciences, 15(9), 5062. https://doi.org/10.3390/app15095062