Alzheimer’s Disease Detection from Retinal Images Using Machine Learning and Deep Learning Techniques: A Perspective
Abstract
1. Introduction
- An overview of deep learning and machine learning techniques for AD detection: this paper presents a thorough analysis of the relevant methods and identifies their strengths and limitations.
- Directions for future research: this paper discusses various approaches to the common challenges of building ML and DL models; possible directions for future research are also discussed.
2. Method
2.1. Eligibility Criteria and Data Extraction
2.2. Search Strategy
3. Results
3.1. Traditional Machine Learning Techniques
3.2. Deep Learning Techniques
4. Discussion
4.1. Machine Learning Techniques
4.2. Deep Learning Techniques
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Association, A. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [Google Scholar]
- Waring, S.C.; Doody, R.S.; Pavlik, V.N.; Massman, P.J.; Chan, W. Survival among patients with dementia from a large multi-ethnic population. Alzheimer Dis. Assoc. Disord. 2005, 19, 178–183. [Google Scholar] [CrossRef]
- Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dement. 2023, 19, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.T.; Xu, W.; Tan, C.C.; Andrieu, S.; Suckling, J.; Evangelou, E.; Pan, A.; Zhang, C.; Jia, J.; Feng, L.; et al. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1201–1209. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef]
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain—from eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Acosta, M.L.; Di Angelantonio, S.; Salt, T.E. Seeing beyond the eye: The brain connection. Fronti. Neurosci. 2021, 15, 719717. [Google Scholar] [CrossRef]
- Czakó, C.; Kovács, T.; Ungvari, Z.; Csiszar, A.; Yabluchanskiy, A.; Conley, S.; Csipo, T.; Lipecz, A.; Horváth, H.; Sándor, G.L.; et al. Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): Implication for early diagnosis and prognosis. Geroscience 2020, 42, 1499–1525. [Google Scholar] [CrossRef]
- Ptito, M.; Bleau, M.; Bouskila, J. The retina: A window into the brain. Cells 2021, 10, 3269. [Google Scholar] [CrossRef]
- Valenti, D.A. Alzheimer’s disease: Visual system review. Optom.-J. Am. Optom. Assoc. 2010, 81, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ascaso, F.J.; Cruz, N.; Modrego, P.J.; Lopez-Anton, R.; Santabárbara, J.; Pascual, L.F.; Lobo, A.; Cristóbal, J.A. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: An optical coherence tomography study. J. Neurol. 2014, 261, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Koronyo-Hamaoui, M.; Koronyo, Y.; Ljubimov, A.V.; Miller, C.A.; Ko, M.K.; Black, K.L.; Schwartz, M.; Farkas, D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 2011, 54, S204–S217. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.; Drexler, W. Introduction to optical coherence tomography. In Optical Coherence Tomography: Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–45. [Google Scholar]
- Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wormstone, I.M.; Qiao, C.; Zhang, C.; Liu, P.; Li, S.; Wang, H.; Mou, D.; Pang, R.; et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019, 137, 1353–1360. [Google Scholar] [CrossRef]
- Ran, A.R.; Tham, C.C.; Chan, P.P.; Cheng, C.Y.; Tham, Y.C.; Rim, T.H.; Cheung, C.Y. Deep learning in glaucoma with optical coherence tomography: A review. Eye 2021, 35, 188–201. [Google Scholar] [CrossRef]
- Joo, Y.S.; Rim, T.H.; Koh, H.B.; Yi, J.; Kim, H.; Lee, G.; Kim, Y.A.; Kang, S.W.; Kim, S.S.; Park, J.T. Non-invasive chronic kidney disease risk stratification tool derived from retina-based deep learning and clinical factors. NPJ Digit. Med. 2023, 6, 114. [Google Scholar] [CrossRef]
- Tian, J.; Smith, G.; Guo, H.; Liu, B.; Pan, Z.; Wang, Z.; Xiong, S.; Fang, R. Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci. Rep. 2021, 11, 238. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, B.; Liu, H.; Wang, Y.; Hao, X.; Zhu, Y.; Xu, B.; Xu, H.; Zhang, S.; Jia, X.; et al. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci. Ther. 2022, 28, 2206–2217. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Ran, A.R.; Wang, S.; Chan, V.T.; Sham, K.; Hilal, S.; Venketasubramanian, N.; Cheng, C.Y.; Sabanayagam, C.; Tham, Y.C.; et al. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: A retrospective, multicentre case-control study. Lancet Digit. Health 2022, 4, e806–e815. [Google Scholar] [CrossRef]
- Shi, X.H.; Ju, L.; Dong, L.; Zhang, R.H.; Shao, L.; Yan, Y.N.; Wang, Y.X.; Fu, X.F.; Chen, Y.Z.; Ge, Z.Y.; et al. Deep Learning Models for the Screening of Cognitive Impairment Using Multimodal Fundus Images. Ophthalmol. Retin. 2024, 8, 666–677. [Google Scholar] [CrossRef]
- Ferreira, H.; Serranho, P.; Guimarães, P.; Trindade, R.; Martins, J.; Moreira, P.I.; Ambrósio, A.F.; Castelo-Branco, M.; Bernardes, R. Stage-independent biomarkers for Alzheimer’s disease from the living retina: An animal study. Sci. Rep. 2022, 12, 13667. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.M.; Lim, C.Y.; Noh, H.; Nam, S.W.; Jun, S.Y.; Kim, M.J.; Song, M.Y.; Jang, H.; Kim, H.J.; Seo, S.W.; et al. Enhancing foveal avascular zone analysis for Alzheimer’s diagnosis with AI segmentation and machine learning using multiple radiomic features. Sci. Rep. 2024, 14, 1841. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, S.; Van Craenendonck, T.; Van Eijgen, J.; De Groef, L.; Bruffaerts, R.; de Jesus, D.A.; Charle, W.; Jayapala, M.; Sunaric-Mégevand, G.; Standaert, A.; et al. Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer’s disease patients. Alzheimer’s Res. Ther. 2020, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, S.M.; Sylvestre, J.P.; Chevrefils, C.; Soucy, J.P.; Beaulieu, S.; Pascoal, T.A.; Arbour, J.D.; Rhéaume, M.A.; Robillard, A.; Chayer, C.; et al. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images. Alzheimer’s Dementia Transl. Res. Clin. Interv. 2019, 5, 610–617. [Google Scholar] [CrossRef]
- Nunes, A.; Silva, G.; Duque, C.; Januario, C.; Santana, I.; Ambrosio, A.F.; Castelo-Branco, M.; Bernardes, R. Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS ONE 2019, 14, e0218826. [Google Scholar] [CrossRef]
- Bernardes, R.; Silva, G.; Chiquita, S.; Serranho, P.; Ambrósio, A.F. Retinal biomarkers of Alzheimer’s disease: Insights from transgenic mouse models. In Proceedings of the Image Analysis and Recognition: 14th International Conference, ICIAR 2017, Proceedings 14, Montreal, QC, Canada, 5–7 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 541–550. [Google Scholar]
- Luengnaruemitchai, G.; Kaewmahanin, W.; Munthuli, A.; Phienphanich, P.; Puangarom, S.; Sangchocanonta, S.; Jariyakosol, S.; Hirunwiwatkul, P.; Tantibundhit, C. Alzheimer’s Together with Mild Cognitive Impairment Screening Using Polar Transformation of Middle Zone of Fundus Images Based Deep Learning. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
- Gao, H.; Zhao, S.; Zheng, G.; Wang, X.; Zhao, R.; Pan, Z.; Li, H.; Lu, F.; Shen, M. Using a dual-stream attention neural network to characterize mild cognitive impairment based on retinal images. Comput. Biol. Med. 2023, 166, 107411. [Google Scholar] [CrossRef]
- Hao, J.; Kwapong, W.R.; Shen, T.; Fu, H.; Xu, Y.; Lu, Q.; Liu, S.; Zhang, J.; Liu, Y.; Zhao, Y.; et al. Early detection of dementia through retinal imaging and trustworthy AI. NPJ Digit. Med. 2024, 7, 294. [Google Scholar] [CrossRef]
- Lim, Y.J.; Park, J.H.; Sunwoo, M.H. Efficient Deep Learning Algorithm for Alzheimer’s Disease Diagnosis using Retinal Images. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 254–257. [Google Scholar]
- Wisely, C.E.; Wang, D.; Henao, R.; Grewal, D.S.; Thompson, A.C.; Robbins, C.B.; Yoon, S.P.; Soundararajan, S.; Polascik, B.W.; Burke, J.R.; et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br. J. Ophthalmol. 2022, 106, 388–395. [Google Scholar] [CrossRef]
- Sayeed, F.; Rafeeq Ahmed, K.; Vinmathi, M.; Priyadarsini, A.I.; Gundupalli, C.B.; Tripathi, V.; Shishah, W.; Sundramurthy, V.P. Classification of transgenic mice by retinal imaging using SVMS. Comput. Intell. Neurosci. 2022, 2022, 9063880. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H.; Ismail, M. SMOTE for handling imbalanced data problem: A review. In Proceedings of the 2021 Sixth International Conference on Informatics and Computing (ICIC), Virtual, 3–4 November 2021; pp. 1–8. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- An, S.; Squirrell, D. Validation of neuron activation patterns for artificial intelligence models in oculomics. Sci. Rep. 2024, 14, 20940. [Google Scholar] [CrossRef] [PubMed]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- Zhang, S.; Metaxas, D. On the challenges and perspectives of foundation models for medical image analysis. Med. Image Anal. 2024, 91, 102996. [Google Scholar] [CrossRef]
- Moor, M.; Banerjee, O.; Abad, Z.S.H.; Krumholz, H.M.; Leskovec, J.; Topol, E.J.; Rajpurkar, P. Foundation models for generalist medical artificial intelligence. Nature 2023, 616, 259–265. [Google Scholar] [CrossRef]
- Zhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court, P.; et al. A foundation model for generalizable disease detection from retinal images. Nature 2023, 622, 156–163. [Google Scholar] [CrossRef]
Ref | Method | Dataset Size (# Images) | Sensitivity (%) | Specificity (%) | AUC (%) | F-1 (%) |
---|---|---|---|---|---|---|
[24] | Machine learning | 170 | 54.4 | 83.7 | 72.0 | - |
[20] | Machine learning | 458 | - | - | 69.0 | 70.0 |
[19] | Machine learning | 244 | 79.2 | 84.8 | - | 81.5 |
[25] | Machine learning | 78 | - | - | 74.0 | - |
[26] | Machine learning | 138 | 82.0 | 86.0 | - | - |
[27] | Machine learning | 150 | 79.5 | 92.5 | - | - |
[28] | Machine learning | 77 | - | - | - | - |
[22] | Deep learning | 15906 | 77.1 | 70.2 | 78.5 | - |
[29] | Deep learning | 225 | 99.0 | 90.0 | - | 97.0 |
[30] | Deep learning | 5266 | - | 94.6 | 96.8 | 90.4 |
[31] | Deep learning | 5751 | 81.6 | - | 90.0 | 82.9 |
[21] | Deep learning | 12949 | 90.4 | 93.5 | 80.6 | - |
[23] | Deep learning | 1144 | 80.4 | 86.5 | - | 83.3 |
[32] | Deep learning | 445 | 83.7 | 89.1 | 92.9 | - |
[33] | Deep learning | 1136 | - | - | 83.6 | - |
Ref | Year | Modality | Algorithm | Features | Type of Study | Age Range |
---|---|---|---|---|---|---|
[24] | 2024 | OCTA | LightGBM | Geometric characteristics of FAZ zone, patient data | Human | 65.70 (7.90) |
[20] | 2022 | OCT | XGBoost | Retinal layer thicknesses, macular volume | Human | 63.03 (9.06) |
[34] | 2022 | OCT | Support vector machine | Texture features | Mice | — |
[19] | 2021 | Fundus photography | Support vector machine | Pixel intensities | Human | 65.17 (4.16) |
[25] | 2020 | Hyperspectral imaging, OCT | Linear discriminant analysis | Reflectance values, RNFL thickness | Human | 55–85 |
[26] | 2019 | Hyperspectral imaging | Support vector machine | Vasculature characteristics, texture features | Human | 60–85 |
[27] | 2019 | OCT | Support vector machine | Texture features | Human | 53–77 |
[28] | 2017 | OCT | Support vector machine | Texture features | Mice | 4–8 months |
Ref | Year | Modality | Network Type | Biomarkers | Type of Study | Age Range |
---|---|---|---|---|---|---|
[31] | 2024 | OCTA | CNN and GNN | FAZ area and neighboring vessels | Human | 66.42 (8.58) |
[22] | 2024 | Fundus photography, OCT | VGG-19, ResNet-50 … (ensemble model) | Optic nerve, macular regions | Human | 63.88 (9.63) |
[29] | 2023 | Fundus photography | DenseNet-121 | Superior, inferior quadrants | Human | — |
[30] | 2023 | OCT, Fundus photography | 5-layer CNN with an attention module | Vascular bifurcations, retinal layers | Human | — |
[21] | 2022 | Fundus photography | EfficientNet-b2 with fusion module | — | Human | Multiple studies |
[23] | 2022 | OCT | Modified Inception-v3 | — | Mice | 1–12 months |
[32] | 2022 | Fundus photography | Modified MobileNetV3 | — | Human | — |
[33] | 2022 | OCT, OCTA, UWF SLO, FAF | 5-layer CNN | — | Human | 71.08 (8.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uvaliyev, A.; Chan, L.L.H. Alzheimer’s Disease Detection from Retinal Images Using Machine Learning and Deep Learning Techniques: A Perspective. Appl. Sci. 2025, 15, 4963. https://doi.org/10.3390/app15094963
Uvaliyev A, Chan LLH. Alzheimer’s Disease Detection from Retinal Images Using Machine Learning and Deep Learning Techniques: A Perspective. Applied Sciences. 2025; 15(9):4963. https://doi.org/10.3390/app15094963
Chicago/Turabian StyleUvaliyev, Adilet, and Leanne Lai Hang Chan. 2025. "Alzheimer’s Disease Detection from Retinal Images Using Machine Learning and Deep Learning Techniques: A Perspective" Applied Sciences 15, no. 9: 4963. https://doi.org/10.3390/app15094963
APA StyleUvaliyev, A., & Chan, L. L. H. (2025). Alzheimer’s Disease Detection from Retinal Images Using Machine Learning and Deep Learning Techniques: A Perspective. Applied Sciences, 15(9), 4963. https://doi.org/10.3390/app15094963