New Functional MRI Experiments Based on Fractional Diffusion Representation Show Independent and Complementary Contrast to Diffusion-Weighted and Blood-Oxygen-Level-Dependent Functional MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Participants
2.3. Stimulus Paradigm
2.4. MRI Acquisition
2.5. Processing
2.6. Simulations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient |
BOLD | blood-oxygen-level-dependent |
DW | Diffusion-weighted |
DWI | Diffusion-weighted imaging |
DW-fMRI | Diffusion-weighted functional Magnetic Resonance Imaging |
Δχ | Magnetic susceptibility difference |
fMRI | Functional Magnetic Resonance Imaging |
Gi | Internal magnetic field gradient |
References
- Rosen, B.R.; Savoy, R.L. fMRI at 20: Has it changed the world? NeuroImage 2012, 62, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Neil, J.; Miller, J.; Mukherjee, P.; Hüppi, P.S. Diffusion tensor imaging of normal and injured developing human brain—A technical review. NMR Biomed. 2002, 15, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D. Diffusion MRI: What water tells us about the brain. EMBO Mol. Med. 2014, 6, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef]
- Ugurbil, K.; Toth, L.; Kim, D.S. How accurate is magnetic resonance imaging of brain function? Trends Neurosci. 2003, 26, 108–114. [Google Scholar] [CrossRef]
- O’Herron, P.; Chhatbar, P.Y.; Levy, M.; Shen, Z.; Schramm, A.E.; Lu, Z.; Kara, P. Neural correlates of single-vessel haemodynamic responses in vivo. Nature 2016, 534, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, N.; Sten, S.; Thompson, P.; Andersson, B.J.; Engström, M.; Cedersund, G. Mechanistic model for human brain metabolism and its connection to the neurovascular coupling. PLoS Comput. Biol. 2022, 18, e1010798. [Google Scholar] [CrossRef] [PubMed]
- Schenck, J.F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 1996, 23, 815–850. [Google Scholar] [CrossRef]
- Spees, W.M.; Yablonskiy, D.A.; Oswood, M.C.; Ackerman, J.J. Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T2*, and non-Lorentzian signal behavior. Magn. Reson. Med. 2001, 45, 533–542. [Google Scholar] [CrossRef]
- Takagi, S.; Obata, T.; Tsubokawa, H. GABAergic input contributes to activity-dependent change in cell volume in the hippocampal CA1 region. Neurosci. Res. 2002, 44, 315–324. [Google Scholar] [CrossRef]
- Tasaki, I. Rapid structural changes in nerve fibers and cells associated with their excitation processes. Japan. J. Physiol. 1999, 49, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995, 8, 333–344. [Google Scholar] [CrossRef]
- Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy, Oxford Science Publications; Clarendon Press: Oxford, UK, 1995. [Google Scholar]
- Jones, D.K. Diffusion MRI; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Zhong, J.; Kennan, R.P.; Fulbright, R.K.; Gore, J.C. Quantification of intravascular and extravascular contributions to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn. Reson. Med. 1998, 40, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Does, M.D.; Zhong, J.; Gore, J.C. In vivo measurement of ADC change due to intravascular susceptibility variation. Magn. Reson. Med. 1999, 41, 236–240. [Google Scholar] [CrossRef]
- Price, W.S. NMR Studies of Translational Motion: Principles and Applications; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521806961. [Google Scholar]
- Song, A.W.; Woldorff, M.G.; Gangstead, S.; Mangun, G.R.; McCarthy, G. Enhanced Spatial Localization of Neuronal Activation Using Simultaneous Apparent-Diffusion-Coefficient and Blood-Oxygenation Functional Magnetic Resonance Imaging. Neuroimage 2002, 17, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.P.; Silva, A.C.; Kim, S.G. Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4T. Magn. Reson. Med. 2002, 47, 736–741. [Google Scholar] [CrossRef]
- Turner, R. How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 2002, 16, 1062–1067. [Google Scholar] [CrossRef]
- Zhong, J.; Petroff, O.A.C.; Prichard, J.W.; Gore, J.C. Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn. Reson. Med. 1993, 30, 241–246. [Google Scholar] [CrossRef]
- Darquie, A.; Poline, J.B.; Poupon, C.; Saint-Jalmes, C.H.; Le Bihan, D. Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc. Natl. Acad. Sci. USA 2001, 98, 9391–9395. [Google Scholar] [CrossRef]
- Le Bihan, D.; Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc. Natl. Acad. Sci. USA 2006, 103, 8263–8268. [Google Scholar] [CrossRef]
- Le Bihan, D. The ‘wet mind’: Water and functional neuroimaging. Phys. Med. Biol. 2007, 52, 57–90. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Tsurugizawa, T.; Le Bihan, D.I. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol. 2017, 15, e2001494. [Google Scholar] [CrossRef]
- Tsurugizawa, T.; Ciobanu, L.; Le Bihan, D. Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc. Natl. Acad. Sci. USA 2013, 110, 11636–11641. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.L.; Bulte, D.P.; Devlin, H.; Robson, M.D.; Wise, R.G.; Woolrich, M.W.; Jezzard, P.; Behrens, T.E.J. Evidence for a vascular contribution to diffusion fMRI at high b value. Proc. Natl. Acad. Sci. USA 2007, 104, 20967–20972. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Kim, S.-G. Functional changes of apparent diffusion coefficient during visual stimulation investigated by diffusion-weighted gradient-echo fMRI. NeuroImage 2008, 41, 801–812. [Google Scholar] [CrossRef]
- Bai, R.; Stewart, C.V.; Plenz, D.; Basser, P.J. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc. Natl. Acad. Sci. USA 2016, 113, E1728–E1737. [Google Scholar] [CrossRef]
- Aso, T.; Urayama, S.I.; Poupon, C.; Sawamoto, N.; Fukuyama, H.; Le Bihan, D. An intrinsic diffusion response function for analysing diffusion functional MRI time series. Neuroimage 2009, 47, 1487–1495. [Google Scholar] [CrossRef]
- Pampel, A.; Jochimsen, T.H.; Möller, H.E. BOLD background gradient contributions in diffusion-weighted fMRI—Comparison of spin-echo and twice-refocused spin-echo sequences. NMR Biomed. 2010, 23, 610–618. [Google Scholar] [CrossRef]
- Jin, T.; Zhao, F.Q.; Kim, S.G. Sources of functional apparent diffusion coefficient changes investigated by diffusion-weighted spin-echo fMRI. Magn. Reson. Med. 2006, 56, 1283–1292. [Google Scholar] [CrossRef]
- Yacoub, E.; Uludag, K.; Ugurbil, K.; Harel, N. Decreases in ADC observed in tissue areas during activation in the cat visual cortex at 9.4 T using high diffusion sensitization. Magn. Reson. Imaging 2008, 26, 889–896. [Google Scholar] [CrossRef]
- Nicolas, R.; Gros-Dagnac, H.; Aubry, F.; Celsis, P. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm. Magn. Reson. Imaging 2017, 39, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Duc, J.; De Riedmatten, I.; Spencer, A.P.; Perot, J.B.; Olszowy, W.; Jelescu, I. Mapping Activity and Functional Organisation of the Motor and Visual Pathways Using ADC-fMRI in the Human Brain. Hum. Brain Mapp. 2025, 46, e70110. [Google Scholar] [CrossRef]
- Costantini, G.; Capuani, S.; Farrelly, F.A.; Taloni, A. A new perspective of molecular diffusion by nuclear magnetic resonance. Sci. Rep. 2023, 13, 1703. [Google Scholar] [CrossRef]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef]
- Wu, E.X.; Cheung, M.M. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010, 23, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Ingo, C.; Magin, R.L.; Colon-Perez, L.; Triplett, W.; Mareci, T.H. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn. Reson. Med. 2014, 71, 617–627. [Google Scholar] [CrossRef]
- Guerreri, M.; Palombo, M.; Caporale, A.; Fasano, F.; Macaluso, E.; Bozzali, M.; Capuani, S. Age-related microstructural and physiological changes in normal brain measured by MRI γ-metrics derived from anomalous diffusion signal representation. NeuroImage 2019, 188, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Palombo, M.; Gentili, S.; Bozzali, M.; Macaluso, E.; Capuani, S. New insight into the contrast in diffusional kurtosis images: Does it depend on magnetic susceptibility? Magn. Reson. Med. 2015, 73, 2015–2024. [Google Scholar] [CrossRef]
- Hertanu, A.; Pavan, T.; Jelescu, I.O. Somatosensory-evoked response induces extensive diffusivity and kurtosis changes associated with neural activity in rodents. Imaging Neurosci. 2025, advance publication. [Google Scholar] [CrossRef]
- Palombo, M.; Gabrielli, A.; De Santis, S.; Cametti, C.; Ruocco, G.; Capuani, S. Spatio-temporal anomalous diffusion in heterogeneous media by nuclear magnetic resonance. J. Chem. Phys. 2011, 135, 034504. [Google Scholar] [CrossRef]
- Palombo, M.; Gabrielli, A.; De Santis, A.; Capuani, S. The γ parameter of the stretched-exponential model is influenced by internal gradients: Validation in phantoms. J. Magn. Reson. 2012, 216, 28–36. [Google Scholar] [CrossRef]
- Capuani, S.; Palombo, M.; Gabrielli, A.; Orlandi, A.; Maraviglia, B.; Pastore, F.S. Spatio-temporal anomalous diffusion imaging: Results in controlled phantoms and in excised human meningiomas. Magn. Reson. Imaging 2013, 31, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Caporale, A.; Palombo, M.; Macaluso, E.; Guerreri, M.; Bozzali, M.; Capuani, S. The γ-parameter of anomalous diffusion quantified in human brain by MRI depends on local magnetic susceptibility differences. Neuroimage 2017, 147, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Capuani, S.; Palombo, M. Mini review on anomalous diffusion by MRI: Potential advantages, pitfalls, limitations, nomenclature, and correct interpretation of literature. Front. Phys. 2020, 7, 248. [Google Scholar] [CrossRef]
- Zhou, X.J.; Gao, Q.; Abdullah, O.; Magin, R.L. Studies of anomalous diffusion in the human brain using fractional order calculus. Magn. Reson. Med. 2010, 63, 562–569. [Google Scholar] [CrossRef]
- Yang, Q.; Reutens, D.C.; Vegh, V. Generalisation of continuous time random walk to anomalous diffusion MRI models with an age-related evaluation of human corpus callosum. NeuroImage 2022, 250, 118903. [Google Scholar] [CrossRef]
- Barrick, T.R.; Spilling, C.A.; Ingo, C.; Madigan, J.; Isaacs, J.D.; Rich, P.; Jones, T.L.; Magin, R.L.; Hall, M.G.; Howe, F.A. Quasi-diffusion magnetic resonance imaging (QDI): A fast, high b-value diffusion imaging technique. Neuroimage 2020, 211, 116606. [Google Scholar] [CrossRef]
- Caporale, A.; Bonomo, G.B.; Tani Raffaelli, G.; Tata, A.M.; Avallone, B.; Wehrli, F.W.; Capuani, S. Transient anomalous diffusion MRI in excised mouse spinal cord: Comparison among different diffusion metrics and validation with histology. Front. Neurosci. 2022, 15, 797642. [Google Scholar] [CrossRef]
- Palombo, M.; Gabrielli, A.; Servedio, V.D.P.; Ruocco, G.; Capuani, S. Structural disorder and anomalous diffusion in random packing of spheres. Sci. Rep. 2013, 3, 2631. [Google Scholar] [CrossRef]
- Palombo, M.; Barbetta, A.; Cametti, C.; Favero, G.; Capuani, S. Transient anomalous diffusion MRI measurement discriminates porous polymeric matrices characterized by different sub-microstructures and fractal dimension. Gels 2022, 8, 95. [Google Scholar] [CrossRef]
- Özarslan, E.; Shepherd, T.M.; Koay, C.G.; Blackband, S.J.; Basser, P.J. Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus. Neuroimage 2012, 60, 1380–1393. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gao, J.H. Fractional motion model for characterization of anomalous diffusion from NMR signals. Phys. Rev. E 2015, 92, 012707. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L.; Ingo, C.; Colon-Perez, L.; Triplett, W.; Mareci, T.H. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater. 2013, 178, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L.; Abdullah, O.; Baleanu, D.; Zhou, X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 2008, 190, 255–270. [Google Scholar] [CrossRef]
- Andersson, J.L.; Sotiropoulos, S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 2016, 125, 1063–1078. [Google Scholar] [CrossRef]
- Palombo, M.; Najac, C.; Valette, J. Potential effect of varying background B0 gradients on diffusion measurements: An in silico study. Proc. Intl. Soc. Mag. Reson. Med. 2015, 23, 4752. [Google Scholar]
- Kubova, Z.; Kuba, M.; Spekreijse, H.; Blakemore, C. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res. 1995, 35, 197–205. [Google Scholar] [CrossRef]
- Williams, R.J.; Reutens, D.C.; Hocking, J. Influence of BOLD contributions to diffusion fMRI activation of the visual cortex. Front. Neurosci. 2016, 10, 279. [Google Scholar] [CrossRef]
- Ding, Z.; Huang, Y.; Bailey, S.K.; Gao, Y.; Cutting, L.E.; Rogers, B.P.; Newton, A.T.; Gore, J.C. Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc. Acad. Sci. USA 2018, 115, 595–600. [Google Scholar] [CrossRef]
- Gagnon, L.; Sakadžić, S.; Lesage, F.; Musacchia, J.J.; Lefebvre, X.; Fang, Q.; Yücel, M.A.; Evans, K.C.; Mandeville, E.T.; Cohen-Adad, J.; et al. Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe. J. Neurosci. 2015, 35, 3663–3675. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Takata, N.; Sakai, Y.; Hamada, H.T.; Hiraoka, Y.; Aida, T.; Tanaka, K.; Le Bihan, D.; Doya, K.; Tanaka, K.F. Diffusion functional MRI reveals global brain network functional abnormalities driven by targeted local activity in a neuropsychiatric disease mouse model. NeuroImage 2020, 223, 117318. [Google Scholar] [CrossRef] [PubMed]
- Branzoli, F.; Techawiboonwong, A.; Kan, H.; Webb, A.; Ronen, I. Functional diffusion-weighted magnetic resonance spectroscopy of the human primary visual cortex at 7 T. Magn. Reson. Med. 2013, 69, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.K.; Alexander, D.C.; Bowtell, R.; Cercignani, M.; Dell’Acqua, F.; McHugh, D.J.; Miller, K.L.; Palombo, M.; Parker, G.J.M.; Rudrapatna, U.S.; et al. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. NeuroImage 2018, 182, 8–38. [Google Scholar] [CrossRef]
- Uhl, Q.; Pavan, T.; Molendowska, M.; Jones, D.K.; Palombo, M.; Jelescu, I.O. Quantifying human gray matter microstructure using neurite exchange imaging (NEXI) and 300 mT/m gradients. Imaging Neurosci. 2024, 2, 1–19. [Google Scholar] [CrossRef]
- Huang, S.Y.; Witzel, T.; Keil, B.; Scholz, A.; Davids, M.; Dietz, P.; Rummert, E.; Ramb, R.; Kirsch, J.E.; Yendiki, A.; et al. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. NeuroImage 2021, 243, 118530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiuro, A.; Palombo, M.; Macaluso, E.; Genovese, G.; Bozzali, M.; Giove, F.; Capuani, S. New Functional MRI Experiments Based on Fractional Diffusion Representation Show Independent and Complementary Contrast to Diffusion-Weighted and Blood-Oxygen-Level-Dependent Functional MRI. Appl. Sci. 2025, 15, 4930. https://doi.org/10.3390/app15094930
Maiuro A, Palombo M, Macaluso E, Genovese G, Bozzali M, Giove F, Capuani S. New Functional MRI Experiments Based on Fractional Diffusion Representation Show Independent and Complementary Contrast to Diffusion-Weighted and Blood-Oxygen-Level-Dependent Functional MRI. Applied Sciences. 2025; 15(9):4930. https://doi.org/10.3390/app15094930
Chicago/Turabian StyleMaiuro, Alessandra, Marco Palombo, Emiliano Macaluso, Guglielmo Genovese, Marco Bozzali, Federico Giove, and Silvia Capuani. 2025. "New Functional MRI Experiments Based on Fractional Diffusion Representation Show Independent and Complementary Contrast to Diffusion-Weighted and Blood-Oxygen-Level-Dependent Functional MRI" Applied Sciences 15, no. 9: 4930. https://doi.org/10.3390/app15094930
APA StyleMaiuro, A., Palombo, M., Macaluso, E., Genovese, G., Bozzali, M., Giove, F., & Capuani, S. (2025). New Functional MRI Experiments Based on Fractional Diffusion Representation Show Independent and Complementary Contrast to Diffusion-Weighted and Blood-Oxygen-Level-Dependent Functional MRI. Applied Sciences, 15(9), 4930. https://doi.org/10.3390/app15094930