Improving Safety in Food Allergen-Specific Oral Immunotherapy
Abstract
:1. Introduction
2. Materials and Methods
3. Food Allergen Immunotherapy
3.1. Milk Oral Immunotherapy
Reference | Design | Sample | Participants Characteristics | Form of Allergen | Duration | Maintenance Dose | Efficacy | Safety |
---|---|---|---|---|---|---|---|---|
Skripak et al. (2008) [10] | Double-blind, placebo-controlled RCT | N = 19 (6–17 y) A = 13 P = 7 | DBPCFC < 2.5 g MP. Excluding: history of severe anaphylaxis; severe persistent asthma | non-fat milk powder | 3–4 months | 500 mg MP | Desensitization: DBPCFC dose threshold of MP: A: median-5140 mg (p = 0.002) P: <40 mg (p = 0.0003) | AE: total reaction per doses: A vs. P = 45.4% vs. 112. Most common local and mild. |
Narisety et al. (2009) [11] | Open label fellow-up | N = 15 (6–16 y) | DBPCFC > 2.5 g MP | Dairy product | 3–17 months | 1–16 g MP (median 7 g) | Desensitization: 6/13 >16 g MP 7/13 1–16 g MP | AE per total doses: 17% SR: 5.8% |
Yanagida et al. (2015) [14] | CCT | N = 37 (>5 g) A = 12 C = 25 | OFC < 3 mL milk. history of anaphylaxis. | Fresh milk | 1 y | 3 mL of fresh milk | Desensitization to 3 mL of milk: A vs. C = 66.7% vs. 13.8% (p = 0.001) US to 3 mL of milk: A vs. C = 58.3% vs. 13.8% (p = 0.031) US to 25 mL of milk: A vs. C = 33% vs. 0% (p = 0.007) | AE per dose: hospital vs. home = 57.1% vs. 19.5% Severe AE: hospital vs. home = 0% vs. 0.03% |
Inuo et al. (2018) [21] | Double-blind RCT | N = 22 (1–9 y) pHF = 11 eHF = 11 | History of SR to CM. Positive OFC to <20 mL rCMF; Excluding: severe persistent asthma | pHF | 8 w | <20 mL pHF | Threshold increase: pHF (p < 0.048) eHF (p = 0.23) | Mild AE: pHF = 18% eHF = 0% Severe AE: 0% |
Nowak-Węgrzyn et al. (2018) [18] | CT | N = 160 (4–10 y) A = 126 RBM = 41 TBM = 85 C = 34 | Positive DBPCFC to different milk form Excluding: history of severe anaphylaxis; severe asthma/EoE | muffin -> pizza -> rice pudding-> unheated milk | 10 months | Unrestricted daily ingestion of dairy products | SU: OFC to 8 g unheated milk: RBM = 0%; TBM = 41% C: 0% | AE: 35% during escalation-OFC SR: no to BM |
Sugiura et al. (2020) [15] | CCT | N = 50 (4–7 y) A = 41 C = 9 | Severe allergy to CM; OFC< 0.264 g MP. Excluding: history of anaphylaxis to <1 mL CM; tolerant to Baked mil | Whole milk | 1 y | 10× > initial dose | Desensitization: OFC to 0.264 g MP: A vs. C = 34.7% vs. 0% (p = 0.042) | % of AE in total doses: 0.47% (subjective 0.28%, objective 0.19%) |
Nagakura et al. (2021) [19] | RCT | N = 33 (5–11 y) HM = 17 UM = 16 | DBPCFC < 3 mL of HM >5 y; history of anaphylaxis to CM; Excluding: uncontrolled AD; bronchial asthma | HM or UM | <12 months | 3 mL of HM or UM | Desensitization: OFC to 3 mL CM: HM vs. UM = 94% vs. 75% (p = 0.17) SU: OFC to 3 mL CM HM vs. UM = 35% vs. 50% (p = 0.34) OFC to 25 mL CM HM vs. UM = 31% vs. 18% (p = 0.43) | % AE: HM vs. UM = 8.1% vs. 9.6% (p = 0.01) |
Maeda et al. (2021) [13] | RCT | N = 28 (3–12 y) A = 14 C = 14 | OFC < 10 mL CM. Excluding: history of severe anaphylaxis to CM; uncontrolled asthma or AD; | Whole milk | 1 y | 100 mL whole milk | Desensitisation to 100 mL CM: A vs. C = 50% vs. 0% (p < 0.01) SU: 8.5% in A group (2 y) | % participants with AE: A = 12/14 (severe 2/14) C = 3/14 (severe 0) |
Dantzer et al. (2022) [20] | Double-blind, placebo-controlled RCT | N = 30 (3–18 y) A = 15 P = 15 | DBPCFC to 3–444 mg of baked MP Excluding: history of severe anaphylaxis; uncontrolled asthma or AD; EoE; | Milk baked in muffin | 8 w–1 y | 2 g MP baked in muffin | Desensitisation: DBPCFC to 4044 mg baked MP: A vs. P = 73% vs. 0% (p < 0.0001) DBPCFC to 2044 mg baked MP: A vs. P = 80% vs. 20% (p < 0.003) Change in threshold= A vs. P = 3.9 g vs. 0 g (p < 0.0001) | AE: % participants: A vs. P = 100% vs. 73% AE: % doses: A vs. P = 42% vs. 2% 95%-mild AE |
Dantzer et al. (2025) [22] | Open label follow-up | N = 13 (3–18 y) | Follow up participants desensitized to 2044 BM | Milk baked in muffin | 1 y | 2 g MP baked in muffin | Per protocol analysis: DBPCFC to 2044 mg of BMP: 75% DBPCFC to 2 g UMP: 73% DBPCFC to 8 g UMP: 45% | AE: % participants: 61.5% % doses: 18.6% 98%- mild AE |
3.2. Egg Oral Immunotherapy
Reference | Design | Sample | Participants Characteristic | Form of Allergen | Duration | Maintenance Dose | Efficacy | Safety |
---|---|---|---|---|---|---|---|---|
Burks et al. (2012) [25] | Double-blind, placebo RCT | n = 55 (5–11 y) OIT: 40 Placebo: 15 | Clinical history of egg-allergy | EWP | 24 months | 2 g EWP | At 10 and 22 months: Desensitization to 5 and 10 g of EPW: OIT: 55% and 75%; Placebo: 0% and 0% (p < 0.00, p < 0.0011) At 24 months: SU to 10 g EPW + 1 cooked egg: OIT: 11%, placebo: 0% (p < 0.03) | AE: % participants OIT: 78%; Placebo: 20% (p < 0.01) Severe AE: no |
Caminiti et al. (2015) [26] | Double-blind placebo-controlled study | N = 31 (4–11 y. median 6) OIT: 17 Placebo: 14 | Age ≥ 4 Clinical history; HE specific IgE & SPT Pos DBPCFC to 3.7 g EW protein | OIT: EWP Placebo: corn flour | 10 months (4 months OIT, 6 months egg containing diet) Control group avoided HE for 9 months after trial | 4 g EWP | Desensitization 4 months: ITT: OIT 16/17; Cont 0/14 SU 13 months ITT: OIT 5/17; Cont 1/14 | AE: % participants OIT: 29 P: 0% Adrenaline OIT 1/17 P 0/14 |
Jones et al. (2016) [27] | Extension of previous study at 4 y | n = 55 (5–11 y) OIT: 40 Placebo: 15 | Clinical history of egg-allergy | EWP | 2 y | 2 g EWP | SU to 10 g EPW + whole cooked egg by 3 and 4 y: OIT: 45% and 50% | AE during OIT dosing: 54% OIT participants, mostly mild symptoms |
Pérez-Rangel et al. (2017) [28] | Open-label, RCT ROIT1 group: rush egg OIT for 5 months Control group: egg avoidance for 5 months before rush egg OIT | ROIT1: n = 19, 10.9 ± 2.7 years Control: n = 14, 9.7 ± 2.3 years | Positive DBPCFC with 2808 mg of EW protein | Dehydrated EWP | 5 months | 1 undercooked egg | Desensitized to 1 undercooked egg ROIT1: 89% Control: 0% (p < 0.001) | Patients with any AE in build-up: 69% |
Itoh-Nagato et al. (2018) [29] | Randomized, parallel-group, delayed-start study. 1st stage: early start group on rush OIT. 2nd stage: all participants on OIT | n = 45 (5–15 y) early start: n = 23 (rush OIT for 3 months) late-group: n = 22 (egg elimination for 3 months before OIT) | positive DBPCFC to ≤500 mg dried raw EPW | Raw EWP | 1 y | 60 g of cooked egg ~1 medium size egg or 1 g EWP | Desensitization to 1000 mg EPW after 3 months: Early star: 87% Late start: 22% (p < 0.001). | AE during first stage: Early start: 80% Late-star: 0% AE requiring adrenaline; 11.6% |
Martín-Muñoz et al. (2019) [30] | Multicenter open-label RCT Group A (AG): Daily maintenance dose Group B (BG): Maintenance dose every two days | AG: n = 38. 81.4 ± 12.5 months BG: n = 38. 81.7 ± 13.4 months | Positive DBPCFC with 3.3 g EPW protein | Pasteurized EW | 1 year | 3.3 g of | Desensitized to 3.3 g at 6 months (T18) and 12 (T24) months after OIT T18: AG, 93.1% and BG, 83.3% T24: AG, 100% and BG, 92% | Patients with any AE: 86.8% More frequent in the BG |
Kim et al. (2020) [31] | Open label randomized trial | n = 50 (3–36 y) BE-R: n = 27 OIT-R: n = 23. OIT-assigned (OIT-A) comparison: 39 | Negative DBPCFC to BE Positive DBPCFC to unbaked egg (1444 mg of EWP) | BE vs. EWP | 2 y | 2000 mg egg white protein | SU to 7444 mg white egg protein: BE-R = 11.1% OIT-R: 43.15% OIT-A 17.9% | AE: % participants: BE-R: 2.8% OIT-R: 3.9% OIT-A: 12.6% Severe AE: only in OIT groups |
Kim et al. (2020) [32] | Extension of previous published study at 5 y | n = 55 (5–11 y) OIT: 40 Placebo: 15 | Clinical history of egg-allergy, Completed previous OIT study | All forms of egg | 1 y | Unlimited consumption all forms of egg | Ingestion all form of egg: SU-OIT: 100% Desensitized OIT: 43% Non-desensitized OIT: 17% Placebo: 36% | AE: no OIT participants reported symptoms to any baked egg consumption |
Palosuo et al. (2021) [33] | Open-label randomized trial | n = 50 (6–17 y) OIT: 32 Control: 18 | Positive DBPCFC to heated egg white | EWP | 8 months | 1 g egg-white protein | Desensitization to 1 g of egg white protein: OIT: 44% Control: 4.8% | AE: 82% participants during build-up phase No severe reactions |
Ogura et al. (2020) [34] | Multicenter, open-label, randomized, uncontrolled trial | Low-dose OIT group: n = 25, 5.2–8.9 year High-dose OIT group: n = 26, 4.7–9.2 year | Positive OFC with 194–1550 mg of egg protein | Scrambled egg | 1 y | Low dose: 1550 mg High dose: 6200 mg | Short term SU to 6200 mg Low-dose OIT: 20% High-dose OIT: 26.9% (p = 0.743) | Any AE per dose Low-dose OIT: 8.74% High-dose OIT: 10.9% (p < 0.05) |
3.3. Peanut Oral Immunotherapy
Reference | Design | Sample | Participants Characteristic | Form of Allergen | Duration | Maintenance Dose | Efficacy | Safety |
---|---|---|---|---|---|---|---|---|
Du Toit et al. (2023) [46] | RCT | 146 (12–48 m) | Positive DBPCFC | peanut flour | 12 months | 300 mg | Desensitization | AE: mild to moderate 75.5%, systemic 2%, none severe Control: mild to moderate 58.3%, severe none |
Bird et al. (2018) [42] | Double-blind, placebo-RCT | 55 (4–26 y) OIT:29 Control:26 | Positive DBPCFC | peanut flour | 24 weeks | 300 mg | Desensitization OIT cumulative doses of ≥443 mg: 79% 1043 mg: 62% Placebo cumulative doses of ≥443 mg: 19% 1043 mg: 0% | AE: Severe symptoms OIT: 0% Control: 38% |
Fernandez-Rivas et al. (2022) [45] | Open-label follow-on study | 142 (4–17 y) OIT 1,5 y: n = 110 OIT 2 y; n = 32 | Positive DBPCFC | peanut flour | 1.5–2 years | 300 mg | Desensitization to 2000 mg of peanut protein: OIT: n = 50 (48.1%) Control: n = 21 (80.8%) | n AE/n participants during maintenance: PALISADE vs. ARC004= OIT 1.5 y: 20.7 vs. 12.8 OIT 2 y: 31.8 vs. 17.5 |
IMPACT trial (2022) [38] | Double-blind, placebo-RCT | 146 (median age 39.3 mo) OIT: 96 Control: 50 | Positive DBPCFC reactive to 500 mg or less of peanut protein | peanut flour | 160 weeks | 2000 mg | Desensitization to 5000 mg OIT: 71% Control: 2% | AE (dosing reaction): Mild to moderate OIT: 98% Control: 80% |
PALISADE study (2018) [43] | Double-blind, placebo-RCT | 496 (4–17 y) OIT: n = 372 Control: 124 | Positive DBPCFC | peanut flour | 6 months | 300 mg | Desensitization to 600 mg of peanut protein: OIT: N = 250 (67.2%) Control: N = 5 (4.0%) | AE: Moderate OIT: 25% Control: 59% Severe OIT: 0.8% Control: 4.3% |
POISEID study (2019) [47] | Double-blind, placebo-RCT | 120 (7–55 y) OIT: 60 OIT 300 mg:35 Placebo: n = 25 | Positive DBPCFC | peanut flour | 156 weeks | 4000 mg | Desensitization to 4000 mg OIT: 37% OIT 300 mg:13% Placebo: 4% | AE: OIT: 83.3% OIT 300 mg: 82.3% Placebo: 44% |
STOP II study (2014) [39] | Open-label randomized trial | 99 (7–15 y) OIT: n = 39 Control: n = 46 | Positive DBPCFC | peanut flour | 6 months | 800 mg | Desensitization OIT: 62% Control: 0% | AE (mild/severe): OIT: 79.5%/0.01% Control: 0% |
Varshney P et al. (2011) [41] | Double-blind, placebo-RCT | 25 (1–16 y) OIT: n = 16 Control: n = 9 | Clinical history peanut reaction within 60 min of ingestion, peanut CAP-FEIA >15 kU/L or >7 kU/L if reaction within 6 months of enrollment, and a positive SPT | peanut flour | 12 months | 4000 mg | Desensitization to 5000 mg of peanut protein: OIT: N = 16 (100%) Control: N = 1 | AE: OIT: 6.25% Control: 100% |
Vickery et al. (2021) [44] | Open label RCT | 24 (1–16 y) | Positive DBPCFC | peanut flour | 5 years | 4000 mg | Desensitization: 50% per protocol 31% ITT | AE: Treatment success: 0% Treatment failure: 14% (mild) |
Vickery et al. (2017) [37] | Open label RCT | 37 (9–36 mo) Low dose: 20 High dose: 17 | Positive DBPCFC | peanut flour | 3 years | Low dose 300 mg High dose 3000 mg | Desensitization (low/high dose): 85%/76% | AE (mild to moderate): 99% |
3.4. Adjuvants in Oral Immunotherapy
3.4.1. Monoclonal Antibodies
- (a)
- Anti-immunoglobulin E monoclonal antibodies
- (b)
- Dupilumab
3.4.2. Interferon γ
3.4.3. Probiotics
3.4.4. Vitamin D
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Adverse reaction |
BM | Baked milk |
CM | Cow’s milk |
CMA | Cow’s milk allergy |
CT | Controlled trial |
DBPCFC | Double-blind placebo-controlled food challenge |
F-OIT | Food oral immunotherapy |
HE | Hen’s egg |
IFN | Interferon |
IL | Interleukin |
mab | Monoclonal antibody |
OFC | Oral food challenge |
OIT | Oral immunotherapy |
OMB | Omalizumab |
RCT | Randomized controlled trial |
SU | Sustained unresponsiveness |
UM | Unheated milk |
EoE | Eosinophilic esophagitis |
References
- Lyons, S.A.; Clausen, M.; Knulst, A.C.; Ballmer-Weber, B.K.; Fernandez-Rivas, M.; Barreales, L.; Bieli, C.; Dubakiene, R.; Fernandez-Perez, C.; Jedrzejczak-Czechowicz, M.; et al. Prevalence of Food Sensitization and Food Allergy in Children Across Europe. J. Allergy Clin. Immunol. Pract. 2020, 8, 2736–2746.e9. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI Guidelines on the Management of IgE-mediated Food Allergy. Allergy 2025, 80, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Schofield, A. A case of egg poisoning. Lancet 1908, 171, 716. [Google Scholar] [CrossRef]
- Graham, F. Variations in Protocol Development during Oral Immunotherapy. J. Food Allergy 2022, 4, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI Guidelines on Allergen Immunotherapy: IgE-mediated Food Allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef]
- Anagnostou, A. Weighing the Benefits and Risks of Oral Immunotherapy in Clinical Practice. Allergy Asthma Proc. 2021, 42, 118–123. [Google Scholar] [CrossRef]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef]
- Parlak, Z.; İlgün Gürel, D.; Soyer, Ö.; Şekerel, B.E.; Şahiner, Ü.M. Nutritional Risks in Children with Food Allergy. Turk. J. Med. Sci. 2023, 53, 845–858. [Google Scholar] [CrossRef]
- Hill, S.A.; Nurmatov, U.; DunnGalvin, A.; Reese, I.; Vieira, M.C.; Rommel, N.; Dupont, C.; Venter, C.; Cianferoni, A.; Walsh, J.; et al. Feeding Difficulties in Children with Food Allergies: An EAACI Task Force Report. Pediatr. Allergy Immunol. 2024, 35, e14119. [Google Scholar] [CrossRef]
- Skripak, J.M.; Nash, S.D.; Rowley, H.; Brereton, N.H.; Oh, S.; Hamilton, R.G.; Matsui, E.C.; Burks, A.W.; Wood, R.A. A Randomized, Double-Blind, Placebo-Controlled Study of Milk Oral Immunotherapy for Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2008, 122, 1154–1160. [Google Scholar] [CrossRef]
- Narisety, S.D.; Skripak, J.M.; Steele, P.; Hamilton, R.G.; Matsui, E.C.; Burks, A.W.; Wood, R.A. Open-Label Maintenance after Milk Oral Immunotherapy for IgE-Mediated Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2009, 124, 610–612. [Google Scholar] [CrossRef]
- Longo, G.; Barbi, E.; Berti, I.; Meneghetti, R.; Pittalis, A.; Ronfani, L.; Ventura, A. Specific Oral Tolerance Induction in Children with Very Severe Cow’s Milk-Induced Reactions. J. Allergy Clin. Immunol. 2008, 121, 343–347. [Google Scholar] [CrossRef]
- Maeda, M.; Imai, T.; Ishikawa, R.; Nakamura, T.; Kamiya, T.; Kimura, A.; Fujita, S.; Akashi, K.; Tada, H.; Morita, H.; et al. Effect of Oral Immunotherapy in Children with Milk Allergy: The ORIMA Study. Allergol. Int. 2021, 70, 223–228. [Google Scholar] [CrossRef]
- Yanagida, N.; Sato, S.; Asaumi, T.; Okada, Y.; Ogura, K.; Ebisawa, M. A Single-Center, Case-Control Study of Low-Dose-Induction Oral Immunotherapy with Cow’s Milk. Int. Arch. Allergy Immunol. 2015, 168, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, S.; Kitamura, K.; Makino, A.; Matsui, T.; Furuta, T.; Takasato, Y.; Kando, N.; Ito, K. Slow Low-Dose Oral Immunotherapy: Threshold and Immunological Change. Allergol. Int. 2020, 69, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Wegrzyn, A.; Bloom, K.A.; Sicherer, S.H.; Shreffler, W.G.; Noone, S.; Wanich, N.; Sampson, H.A. Tolerance to Extensively Heated Milk in Children with Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2008, 122, 342–347.e2. [Google Scholar] [CrossRef]
- Nowak-Wegrzyn, A.; Fiocchi, A. Rare, Medium, or Well Done? The Effect of Heating and Food Matrix on Food Protein Allergenicity. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Węgrzyn, A.; Lawson, K.; Masilamani, M.; Kattan, J.; Bahnson, H.T.; Sampson, H.A. Increased Tolerance to Less Extensively Heat-Denatured (Baked) Milk Products in Milk-Allergic Children. J. Allergy Clin. Immunol. Pract. 2018, 6, 486–495.e5. [Google Scholar] [CrossRef]
- Nagakura, K.; Sato, S.; Miura, Y.; Nishino, M.; Takahashi, K.; Asaumi, T.; Ogura, K.; Ebisawa, M.; Yanagida, N. A Randomized Trial of Oral Immunotherapy for Pediatric Cow’s Milk-Induced Anaphylaxis: Heated vs Unheated Milk. Pediatr. Allergy Immunol. 2021, 32, 161–169. [Google Scholar] [CrossRef]
- Dantzer, J.; Dunlop, J.; Psoter, K.J.; Keet, C.; Wood, R. Efficacy and Safety of Baked Milk Oral Immunotherapy in Children with Severe Milk Allergy: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. J. Allergy Clin. Immunol. 2022, 149, 1383–1391.e17. [Google Scholar] [CrossRef]
- Inuo, C.; Tanaka, K.; Suzuki, S.; Nakajima, Y.; Yamawaki, K.; Tsuge, I.; Urisu, A.; Kondo, Y. Oral Immunotherapy Using Partially Hydrolyzed Formula for Cow’s Milk Protein Allergy: A Randomized, Controlled Trial. Int. Arch. Allergy Immunol. 2018, 177, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, J.A.; Lewis, S.A.; Psoter, K.J.; Sutherland, A.; Frazier, A.; Richardson, E.; Maiche, S.; Seumois, G.; Peters, B.; Wood, R.A. Clinical and Immunological Outcomes after Randomized Trial of Baked Milk Oral Immunotherapy for Milk Allergy. JCI Insight 2025, 10, e184301. [Google Scholar] [CrossRef]
- Meyer, R.; Wright, K.; Vieira, M.C.; Chong, K.W.; Chatchatee, P.; Vlieg-Boerstra, B.J.; Groetch, M.; Dominguez-Ortega, G.; Heath, S.; Lang, A.; et al. International Survey on Growth Indices and Impacting Factors in Children with Food Allergies. J. Hum. Nutr. Diet. 2019, 32, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, A.D.; Green, T.D.; Jones, S.M.; Scurlock, A.M.; Christie, L.; Althage, K.A.; Steele, P.H.; Pons, L.; Helm, R.M.; Lee, L.A.; et al. Egg Oral Immunotherapy in Nonanaphylactic Children with Egg Allergy. J. Allergy Clin. Immunol. 2007, 119, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Burks, A.W.; Jones, S.M.; Wood, R.A.; Fleischer, D.M.; Sicherer, S.H.; Lindblad, R.W.; Stablein, D.; Henning, A.K.; Vickery, B.P.; Liu, A.H.; et al. Oral Immunotherapy for Treatment of Egg Allergy in Children. N. Engl. J. Med. 2012, 367, 233–243. [Google Scholar] [CrossRef]
- Caminiti, L.; Pajno, G.B.; Crisafulli, G.; Chiera, F.; Collura, M.; Panasci, G.; Ruggeri, P.; Guglielmo, F.; Passalacqua, G. Oral Immunotherapy for Egg Allergy: A Double-Blind Placebo-Controlled Study, with Postdesensitization Follow-Up. J. Allergy Clin. Immunol. Pract. 2015, 3, 532–539. [Google Scholar] [CrossRef]
- Jones, S.M.; Burks, A.W.; Keet, C.; Vickery, B.P.; Scurlock, A.M.; Wood, R.A.; Liu, A.H.; Sicherer, S.H.; Henning, A.K.; Lindblad, R.W.; et al. Long-Term Treatment with Egg Oral Immunotherapy Enhances Sustained Unresponsiveness That Persists after Cessation of Therapy. J. Allergy Clin. Immunol. 2016, 137, 1117–1127.e10. [Google Scholar] [CrossRef]
- Pérez-Rangel, I.; Rodríguez del Río, P.; Escudero, C.; Sánchez-García, S.; Sánchez-Hernández, J.J.; Ibáñez, M.D. Efficacy and Safety of High-Dose Rush Oral Immunotherapy in Persistent Egg Allergic Children. Ann. Allergy Asthma Immunol. 2017, 118, 356–364.e3. [Google Scholar] [CrossRef]
- Itoh-Nagato, N.; Inoue, Y.; Nagao, M.; Fujisawa, T.; Shimojo, N.; Iwata, T.; Adachi, Y.; Arakawa, K.; Arima, T.; Fukushima, K.; et al. Desensitization to a Whole Egg by Rush Oral Immunotherapy Improves the Quality of Life of Guardians: A Multicenter, Randomized, Parallel-Group, Delayed-Start Design Study. Allergol. Int. 2018, 67, 209–216. [Google Scholar] [CrossRef]
- Martín-Muñoz, M.F.; Alonso Lebrero, E.; Zapatero, L.; Fuentes Aparicio, V.; Piquer Gibert, M.; Plaza Martín, A.M.; Muñoz, C.; Belver, M.T.; Martorell-Calatayud, C.; Martorell-Aragonés, A.; et al. Egg OIT in Clinical Practice (SEICAP II): Maintenance Patterns and Desensitization State after Normalizing the Diet. Pediatr. Allergy Immunol. 2019, 30, 214–224. [Google Scholar] [CrossRef]
- Kim, E.H.; Perry, T.T.; Wood, R.A.; Leung, D.Y.M.; Berin, M.C.; Burks, A.W.; Cho, C.B.; Jones, S.M.; Scurlock, A.; Sicherer, S.H.; et al. Induction of Sustained Unresponsiveness after Egg Oral Immunotherapy Compared to Baked Egg Therapy in Children with Egg Allergy. J. Allergy Clin. Immunol. 2020, 146, 851–862.e10. [Google Scholar] [CrossRef]
- Kim, E.H.; Jones, S.M.; Burks, A.W.; Wood, R.A.; Sicherer, S.H.; Leung, D.Y.M.; Henning, A.K.; Lindblad, R.W.; Dawson, P.; Keet, C.; et al. A 5-Year Summary of Real-Life Dietary Egg Consumption after Completion of a 4-Year Egg Powder Oral Immunotherapy (EOIT) Protocol. J. Allergy Clin. Immunol. 2020, 145, 1292–1295.e1. [Google Scholar] [CrossRef] [PubMed]
- Palosuo, K.; Karisola, P.; Savinko, T.; Fyhrquist, N.; Alenius, H.; Mäkelä, M.J. A Randomized, Open-Label Trial of Hen’s Egg Oral Immunotherapy: Efficacy and Humoral Immune Responses in 50 Children. J. Allergy Clin. Immunol. Pract. 2021, 9, 1892–1901.e1. [Google Scholar] [CrossRef]
- Ogura, K.; Yanagida, N.; Sato, S.; Imai, T.; Ito, K.; Kando, N.; Ikeda, M.; Shibata, R.; Murakami, Y.; Fujisawa, T.; et al. Evaluation of Oral Immunotherapy Efficacy and Safety by Maintenance Dose Dependency: A Multicenter Randomized Study. World Allergy Organ. J. 2020, 13, 100463. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Gupta, R.S.; Knibb, R.C.; Haselkorn, T.; Tilles, S.; Mack, D.P.; Pouessel, G. The Global Burden of Illness of Peanut Allergy: A Comprehensive Literature Review. Allergy 2021, 76, 1367–1384. [Google Scholar] [CrossRef]
- Reinwald, S.; Rolland, J.M.; O’Hehir, R.E.; van Zelm, M.C. Peanut Oral Immunotherapy: Current Trends in Clinical Trials. Immunother. Adv. 2022, 2, ltac004. [Google Scholar] [CrossRef]
- Vickery, B.P.; Berglund, J.P.; Burk, C.M.; Fine, J.P.; Kim, E.H.; Kim, J.I.; Keet, C.A.; Kulis, M.; Orgel, K.G.; Guo, R.; et al. Early Oral Immunotherapy in Peanut-Allergic Preschool Children Is Safe and Highly Effective. J. Allergy Clin. Immunol. 2017, 139, 173–181.e8. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.M.; Kim, E.H.; Nadeau, K.C.; Nowak-Wegrzyn, A.; Wood, R.A.; Sampson, H.A.; Scurlock, A.M.; Chinthrajah, S.; Wang, J.; Pesek, R.D.; et al. Efficacy and Safety of Oral Immunotherapy in Children Aged 1–3 Years with Peanut Allergy (the Immune Tolerance Network IMPACT Trial): A Randomised Placebo-Controlled Study. Lancet 2022, 399, 359–371. [Google Scholar] [CrossRef]
- Anagnostou, K.; Islam, S.; King, Y.; Foley, L.; Pasea, L.; Bond, S.; Palmer, C.; Deighton, J.; Ewan, P.; Clark, A. Assessing the Efficacy of Oral Immunotherapy for the Desensitisation of Peanut Allergy in Children (STOP II): A Phase 2 Randomised Controlled Trial. Lancet 2014, 383, 1297–1304. [Google Scholar] [CrossRef]
- Laubach, S.; Kim, E.H.; Greenhawt, M.; Bailey, S.; Anagnostou, A. A Review of Shared Decision-Making, Published Protocols, and Post-Desensitization Strategies in Oral Immunotherapy (OIT). Curr. Allergy Asthma Rep. 2024, 24, 173–197. [Google Scholar] [CrossRef]
- Varshney, P.; Jones, S.M.; Scurlock, A.M.; Perry, T.T.; Kemper, A.; Steele, P.; Hiegel, A.; Kamilaris, J.; Carlisle, S.; Yue, X.; et al. A Randomized Controlled Study of Peanut Oral Immunotherapy: Clinical Desensitization and Modulation of the Allergic Response. J. Allergy Clin. Immunol. 2011, 127, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.A.; Spergel, J.M.; Jones, S.M.; Rachid, R.; Assa’ad, A.H.; Wang, J.; Leonard, S.A.; Laubach, S.S.; Kim, E.H.; Vickery, B.P.; et al. Efficacy and Safety of AR101 in Oral Immunotherapy for Peanut Allergy: Results of ARC001, a Randomized, Double-Blind, Placebo-Controlled Phase 2 Clinical Trial. J. Allergy Clin. Immunol. Pract. 2018, 6, 476–485.e3. [Google Scholar] [CrossRef] [PubMed]
- PALISADE Group of Clinical Investigators. AR101 Oral Immunotherapy for Peanut Allergy. N. Engl. J. Med. 2018, 379, 1991–2001. [Google Scholar] [CrossRef]
- Vickery, B.P.; Vereda, A.; Nilsson, C.; du Toit, G.; Shreffler, W.G.; Burks, A.W.; Jones, S.M.; Fernández-Rivas, M.; Blümchen, K.; Hourihane, J.O.; et al. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J. Allergy Clin. Immunol. Pract. 2021, 9, 1879–1889.e13. [Google Scholar] [CrossRef]
- Fernandez-Rivas, M.; Vereda, A.; Vickery, B.P.; Sharma, V.; Nilsson, C.; Muraro, A.; Hourihane, J.O.; DunnGalvin, A.; du Toit, G.; Blumchen, K.; et al. Open-label Follow-on Study Evaluating the Efficacy, Safety, and Quality of Life with Extended Daily Oral Immunotherapy in Children with Peanut Allergy. Allergy 2022, 77, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, G.; Brown, K.R.; Vereda, A.; Irani, A.-M.; Tilles, S.; Ratnayake, A.; Jones, S.M.; Vickery, B.P. Oral Immunotherapy for Peanut Allergy in Children 1 to Less Than 4 Years of Age. NEJM Evid. 2023, 2, EVIDoa2300145. [Google Scholar] [CrossRef]
- Chinthrajah, R.S.; Purington, N.; Andorf, S.; Long, A.; O’Laughlin, K.L.; Lyu, S.C.; Manohar, M.; Boyd, S.D.; Tibshirani, R.; Maecker, H.; et al. Sustained Outcomes in Oral Immunotherapy for Peanut Allergy (POISED Study): A Large, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Study. Lancet 2019, 394, 1437–1449. [Google Scholar] [CrossRef]
- Wood, R.A. Food Allergen Immunotherapy: Current Status and Prospects for the Future. J. Allergy Clin. Immunol. 2016, 137, 973–982. [Google Scholar] [CrossRef]
- Tang, M.L.K.; Hsiao, K.-C. An Update on Oral Immunotherapy for the Treatment of Food Allergy. Paediatr. Child. Health 2016, 26, 304–309. [Google Scholar] [CrossRef]
- Loh, W.; Tang, M. Adjuvant Therapies in Food Immunotherapy. Immunol. Allergy Clin. N. Am. 2018, 38, 89–101. [Google Scholar] [CrossRef]
- Barbi, E.; Longo, G.; Berti, I.; Matarazzo, L.; Rubert, L.; Saccari, A.; Lenisa, I.; Ronfani, L.; Radillo, O.; Ventura, A. Adverse Effects during Specific Oral Tolerance Induction: In Home Phase. Allergol. Immunopathol. 2012, 40, 41–50. [Google Scholar] [CrossRef]
- Keet, C.A.; Seopaul, S.; Knorr, S.; Narisety, S.; Skripak, J.; Wood, R.A. Long-Term Follow-up of Oral Immunotherapy for Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2013, 132, 737–739.e6. [Google Scholar] [CrossRef] [PubMed]
- Prussin, C.; Griffith, D.T.; Boesel, K.M.; Lin, H.; Foster, B.; Casale, T.B. Omalizumab Treatment Downregulates Dendritic Cell FcεRI Expression. J. Allergy Clin. Immunol. 2003, 112, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.M.; Sampson, H.A.; Yunginger, J.W.; Burks, A.W.; Schneider, L.C.; Wortel, C.H.; Davis, F.M.; Hyun, J.D.; Shanahan, W.R. Effect of Anti-IgE Therapy in Patients with Peanut Allergy. N. Engl. J. Med. 2003, 348, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A.; Leung, D.Y.M.; Burks, A.W.; Lack, G.; Bahna, S.L.; Jones, S.M.; Wong, D.A. A Phase II, Randomized, Double-blind, Parallel-group, Placebo-controlled Oral Food Challenge Trial of Xolair (Omalizumab) in Peanut Allergy. J. Allergy Clin. Immunol. 2011, 127, 1309–1310.e1. [Google Scholar] [CrossRef]
- Savage, J.H.; Courneya, J.-P.; Sterba, P.M.; MacGlashan, D.W.; Saini, S.S.; Wood, R.A. Kinetics of Mast Cell, Basophil, and Oral Food Challenge Responses in Omalizumab-Treated Adults with Peanut Allergy. J. Allergy Clin. Immunol. 2012, 130, 1123–1129.e2. [Google Scholar] [CrossRef]
- Nadeau, K.C.; Schneider, L.C.; Hoyte, L.; Borras, I.; Umetsu, D.T. Rapid Oral Desensitization in Combination with Omalizumab Therapy in Patients with Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2011, 127, 1622–1624. [Google Scholar] [CrossRef]
- Yee, C.S.K.; Albuhairi, S.; Noh, E.; El-Khoury, K.; Rezaei, S.; Abdel-Gadir, A.; Umetsu, D.T.; Burke-Roberts, E.; LeBovidge, J.; Schneider, L.; et al. Long-Term Outcome of Peanut Oral Immunotherapy Facilitated Initially by Omalizumab. J. Allergy Clin. Immunol. Pract. 2019, 7, 451–461.e7. [Google Scholar] [CrossRef]
- MacGinnitie, A.J.; Rachid, R.; Gragg, H.; Little, S.V.; Lakin, P.; Cianferoni, A.; Heimall, J.; Makhija, M.; Robison, R.; Chinthrajah, R.S.; et al. Omalizumab Facilitates Rapid Oral Desensitization for Peanut Allergy. J. Allergy Clin. Immunol. 2017, 139, 873–881.e8. [Google Scholar] [CrossRef]
- Schneider, L.C.; Rachid, R.; LeBovidge, J.; Blood, E.; Mittal, M.; Umetsu, D.T. A Pilot Study of Omalizumab to Facilitate Rapid Oral Desensitization in High-Risk Peanut-Allergic Patients. J. Allergy Clin. Immunol. 2013, 132, 1368–1374. [Google Scholar] [CrossRef]
- Bégin, P.; Dominguez, T.; Wilson, S.P.; Bacal, L.; Mehrotra, A.; Kausch, B.; Trela, A.; Tavassoli, M.; Hoyte, E.; O’Riordan, G.; et al. Phase 1 Results of Safety and Tolerability in a Rush Oral Immunotherapy Protocol to Multiple Foods Using Omalizumab. Allergy Asthma Clin. Immunol. 2014, 10, 7. [Google Scholar] [CrossRef]
- Takahashi, M.; Soejima, K.; Taniuchi, S.; Hatano, Y.; Yamanouchi, S.; Ishikawa, H.; Irahara, M.; Sasaki, Y.; Kido, H.; Kaneko, K. Oral Immunotherapy Combined with Omalizumab for High–Risk Cow’s Milk Allergy: A Randomized Controlled Trial. Sci. Rep. 2017, 7, 17453. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, I.; Mazon, A.; Nieto, M.; Uixera, S.; Pina, R.; Nieto, A. Possible Recurrence of Symptoms after Discontinuation of Omalizumab in Anti-IgE-assisted Desensitization to Egg. Pediatr. Allergy Immunol. 2014, 25, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Manohar, M.; Dominguez, T.; Block, W.; Tupa, D.; Kshirsagar, R.A.; Sampath, V.; Chinthrajah, R.S.; Nadeau, K.C. Observational Long-Term Follow-up Study of Rapid Food Oral Immunotherapy with Omalizumab. Allergy Asthma Clin. Immunol. 2017, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Purington, N.; Kumar, D.; Long, A.; O’Laughlin, K.L.; Sicherer, S.; Sampson, H.; Cianferoni, A.; Whitehorn, T.B.; Petroni, D.; et al. A Phase 2 Randomized Controlled Multisite Study Using Omalizumab-Facilitated Rapid Desensitization to Test Continued vs Discontinued Dosing in Multifood Allergic Individuals. eClinicalMedicine 2019, 7, 27–38. [Google Scholar] [CrossRef]
- Macdonald, L.E.; Karow, M.; Stevens, S.; Auerbach, W.; Poueymirou, W.T.; Yasenchak, J.; Frendewey, D.; Valenzuela, D.M.; Giallourakis, C.C.; Alt, F.W.; et al. Precise and in Situ Genetic Humanization of 6 Mb of Mouse Immunoglobulin Genes. Proc. Natl. Acad. Sci. USA 2014, 111, 5147–5152. [Google Scholar] [CrossRef]
- Murphy, A.J.; Macdonald, L.E.; Stevens, S.; Karow, M.; Dore, A.T.; Pobursky, K.; Huang, T.T.; Poueymirou, W.T.; Esau, L.; Meola, M.; et al. Mice with Megabase Humanization of Their Immunoglobulin Genes Generate Antibodies as Efficiently as Normal Mice. Proc. Natl. Acad. Sci. USA 2014, 111, 5153–5158. [Google Scholar] [CrossRef]
- Gandhi, N.A.; Pirozzi, G.; Graham, N.M.H. Commonality of the IL-4/IL-13 Pathway in Atopic Diseases. Expert. Rev. Clin. Immunol. 2017, 13, 425–437. [Google Scholar] [CrossRef]
- Le Floc’h, A.; Allinne, J.; Nagashima, K.; Scott, G.; Birchard, D.; Asrat, S.; Bai, Y.; Lim, W.K.; Martin, J.; Huang, T.; et al. Dual Blockade of IL-4 and IL-13 with Dupilumab, an IL-4Rα Antibody, Is Required to Broadly Inhibit Type 2 Inflammation. Allergy 2020, 75, 1188–1204. [Google Scholar] [CrossRef]
- Simpson, E.L.; Bieber, T.; Guttman-Yassky, E.; Beck, L.A.; Blauvelt, A.; Cork, M.J.; Silverberg, J.I.; Deleuran, M.; Kataoka, Y.; Lacour, J.-P.; et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2016, 375, 2335–2348. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Rothenberg, M.E.; Collins, M.H.; Hirano, I.; Chehade, M.; Bredenoord, A.J.; Lucendo, A.J.; Spergel, J.M.; Aceves, S.; Sun, X.; et al. Dupilumab in Adults and Adolescents with Eosinophilic Esophagitis. N. Engl. J. Med. 2022, 387, 2317–2330. [Google Scholar] [CrossRef]
- Busse, W.W.; Maspero, J.F.; Lu, Y.; Corren, J.; Hanania, N.A.; Chipps, B.E.; Katelaris, C.H.; FitzGerald, J.M.; Quirce, S.; Ford, L.B.; et al. Efficacy of Dupilumab on Clinical Outcomes in Patients with Asthma and Perennial Allergic Rhinitis. Ann. Allergy Asthma Immunol. 2020, 125, 565–576.e1. [Google Scholar] [CrossRef] [PubMed]
- Chinthrajah, R.S.; Sindher, S.B.; Nadeau, K.C.; Leflein, J.G.; Spergel, J.M.; Petroni, D.H.; Jones, S.M.; Casale, T.B.; Wang, J.; Carr, W.W.; et al. Dupilumab as an Adjunct to Oral Immunotherapy in Pediatric Patients with Peanut Allergy. Allergy 2025, 80, 827–842. [Google Scholar] [CrossRef]
- Teixeira, L.K.; Fonseca, B.P.; Barboza, B.A.; Viola, J.P. The Role of Interferon-Gamma on Immune and Allergic Responses. Mem. Inst. Oswaldo Cruz 2005, 100 (Suppl. 1), 137–144. [Google Scholar] [CrossRef] [PubMed]
- Noh, G.; Young Lee, K. Pilot study of ifn-γ-induced specific hyposensitization for house dust mites in atopic dermatitis: Ifn-γ-induced immune deviation as a new therapeutic concept for atopic dermatitis. Cytokine 2000, 12, 472–476. [Google Scholar] [CrossRef]
- Noh, G.; Lee, S.S. Effects of IFN-γ on Milk-Specific Oral Tolerance Induction for Milk Allergy in Atopic Dermatitis: Food-Specific Oral Tolerance Induction Using IFN-γ as Adjuvant. In Clinical Immunology and Allergy in Medicine; Marone, G., Ed.; JGC Editions: Naples, Italy, 2003; pp. 475–496. [Google Scholar]
- Noh, G.; Jang, E.H. Dual Specific Oral Tolerance Induction Using Interferon Gamma for IgE-Mediated Anaphylactic Food Allergy and the Dissociation of Local Skin Allergy and Systemic Oral Allergy: Tolerance or Desensitization? J. Investig. Allergol. Clin. Immunol. 2014, 24, 87–97. [Google Scholar]
- Noh, G.; Lee, S.-S. A Pilot Study of Interferon-γ–Induced Specific Oral Tolerance Induction (ISOTI) for Immunoglobulin E–Mediated Anaphylactic Food Allergy. J. Interferon Cytokine Res. 2009, 29, 667–676. [Google Scholar] [CrossRef]
- Jang, S.-O.; Kim, H.-J.; Kim, Y.-J.; Kang, M.-J.; Kwon, J.-W.; Seo, J.-H.; Kim, H.Y.; Kim, B.-J.; Yu, J.; Hong, S.-J. Asthma Prevention by Lactobacillus rhamnosus in a Mouse Model Is Associated with CD4 + CD25 + Foxp3 + T Cells. Allergy Asthma Immunol. Res. 2012, 4, 150. [Google Scholar] [CrossRef]
- Jan, R.-L.; Yeh, K.-C.; Hsieh, M.-H.; Lin, Y.-L.; Kao, H.-F.; Li, P.-H.; Chang, Y.-S.; Wang, J.-Y. Lactobacillus gasseri Suppresses Th17 pro-Inflammatory Response and Attenuates Allergen-Induced Airway Inflammation in a Mouse Model of Allergic Asthma. Br. J. Nutr. 2012, 108, 130–139. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Lee, C.-G.; So, J.-S.; Chae, C.-S.; Hwang, J.-S.; Sahoo, A.; Nam, J.H.; Rhee, J.H.; Hwang, K.-C.; Im, S.-H. Generation of Regulatory Dendritic Cells and CD4 + Foxp3 + T Cells by Probiotics Administration Suppresses Immune Disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 2159–2164. [Google Scholar] [CrossRef]
- Tang, M.L.K.; Ponsonby, A.-L.; Orsini, F.; Tey, D.; Robinson, M.; Su, E.L.; Licciardi, P.; Burks, W.; Donath, S. Administration of a Probiotic with Peanut Oral Immunotherapy: A Randomized Trial. J. Allergy Clin. Immunol. 2015, 135, 737–744.e8. [Google Scholar] [CrossRef] [PubMed]
- Dunn Galvin, A.; McMahon, S.; Ponsonby, A.-L.; Hsiao, K.-C.; Tang, M.L.K. The Longitudinal Impact of Probiotic and Peanut Oral Immunotherapy on Health-related Quality of Life. Allergy 2018, 73, 560–568. [Google Scholar] [CrossRef]
- Hsiao, K.-C.; Ponsonby, A.-L.; Axelrad, C.; Pitkin, S.; Tang, M.L.K.; Burks, W.; Donath, S.; Orsini, F.; Tey, D.; Robinson, M.; et al. Long-Term Clinical and Immunological Effects of Probiotic and Peanut Oral Immunotherapy after Treatment Cessation: 4-Year Follow-up of a Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Child. Adolesc. Health 2017, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhani, H.; Al-Garawi, A.; Weiss, S.T.; Litonjua, A.A. Vitamin D and the Development of Allergic Disease: How Important Is It? Clin. Exp. Allergy 2015, 45, 114–125. [Google Scholar] [CrossRef]
- Hossein-nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [PubMed]
- Roider, E.; Ruzicka, T.; Schauber, J. Vitamin D, the Cutaneous Barrier, Antimicrobial Peptides and Allergies: Is There a Link? Allergy Asthma Immunol. Res. 2013, 5, 119. [Google Scholar] [CrossRef]
- Silva, C.M.; da Silva, S.A.; Antunes, M.M. de C.; Silva, G.A.P. da; Sarinho, E.S.C.; Brandt, K.G. Do Infants with Cow’s Milk Protein Allergy Have Inadequate Levels of Vitamin D? J. Pediatr. 2017, 93, 632–638. [Google Scholar] [CrossRef]
- Allen, K.J.; Koplin, J.J.; Ponsonby, A.-L.; Gurrin, L.C.; Wake, M.; Vuillermin, P.; Martin, P.; Matheson, M.; Lowe, A.; Robinson, M.; et al. Vitamin D Insufficiency Is Associated with Challenge-Proven Food Allergy in Infants. J. Allergy Clin. Immunol. 2013, 131, 1109–1116.e6. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Ren, Y.; Yang, H.; Sun, X.; Huang, H. Clinical Efficacy of Vitamin D3 Adjuvant Therapy in Allergic Rhinitis: A Randomized Controlled Trial. Iran. J. Immunol. 2020, 17, 283–291. [Google Scholar] [CrossRef]
- Cianferoni, A.; Muraro, A. Food-Induced Anaphylaxis. Immunol. Allergy Clin. N. Am. 2012, 32, 165–195. [Google Scholar] [CrossRef] [PubMed]
- Kulis, M.; Yue, X.; Guo, R.; Zhang, H.; Orgel, K.; Ye, P.; Li, Q.; Liu, Y.; Kim, E.; Burks, A.W.; et al. High- and Low-dose Oral Immunotherapy Similarly Suppress Pro-allergic Cytokines and Basophil Activation in Young Children. Clin. Exp. Allergy 2019, 49, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, P. Low Dose Multi-Nut Oral Immunotherapy in Pre-Schoolers with a Multi-Nut Allergy (LMNOP). Clinical Trial NCT05049512. 2021; manuscript in preparation. [Google Scholar]
- Akagawa, S.; Kaneko, K. Gut Microbiota and Allergic Diseases in Children. Allergol. Int. 2022, 71, 301–309. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrkić Kobal, I.; Jurić, M.; Munivrana Škvorc, H.; Miletić Gospić, A.; Miculinić, A.; Plavec, D. Improving Safety in Food Allergen-Specific Oral Immunotherapy. Appl. Sci. 2025, 15, 4857. https://doi.org/10.3390/app15094857
Mrkić Kobal I, Jurić M, Munivrana Škvorc H, Miletić Gospić A, Miculinić A, Plavec D. Improving Safety in Food Allergen-Specific Oral Immunotherapy. Applied Sciences. 2025; 15(9):4857. https://doi.org/10.3390/app15094857
Chicago/Turabian StyleMrkić Kobal, Iva, Milan Jurić, Helena Munivrana Škvorc, Adrijana Miletić Gospić, Andrija Miculinić, and Davor Plavec. 2025. "Improving Safety in Food Allergen-Specific Oral Immunotherapy" Applied Sciences 15, no. 9: 4857. https://doi.org/10.3390/app15094857
APA StyleMrkić Kobal, I., Jurić, M., Munivrana Škvorc, H., Miletić Gospić, A., Miculinić, A., & Plavec, D. (2025). Improving Safety in Food Allergen-Specific Oral Immunotherapy. Applied Sciences, 15(9), 4857. https://doi.org/10.3390/app15094857