HarmoDehazeDiffusion: Multi-Scale Spatial Fusion Network for Dense Haze Removal
Abstract
:1. Introduction
- We propose a dehazing model based on a diffusion model, named HarmoDehazeDiffusion. By introducing a novel Depth Fusion Diffusion Model, the network achieves a satisfactory dehazing performance even when dealing with dense haze images.
- We present a new spatial feature fusion module that enables the network to integrate multi-level information, thereby maintaining overall consistency in the illumination in the dehazed results. Additionally, we propose an improved multi-scale feature extraction structure that allows the network to reconstruct the texture of the dense haze regions by leveraging long-range features.
- Extensive experiments conducted on the publicly available SOTS-indoor, SOTS-outdoor, and Haze4K datasets demonstrate that our proposed HarmoDehazeDiffusion method outperforms the current state-of-the-art dehazing methods in its dehazing performance.
2. Related Work
3. The Method
3.1. The Depth Fusion Diffusion Model
Algorithm 1: Depth Fusion Diffusion Model. | |||
Input: The hazy image y, the non-hazy image x, and the depth map D | |||
1 | while not converged do | ||
2 | |||
3 | ) | ||
4 | |||
5 | Perform gradient descent steps on | ||
6 | end | ||
7 | return |
3.2. Spatial Feature Fusion
3.3. Multi-Scale Feature Extraction
4. Experiments
4.1. The Experimental Setup
4.2. Comparison with the State of the Art
4.3. An Ablation Study
- Ours w/o depth: The original model without depth maps;
- Ours w/o multi-scale FE: The model with depth maps but without multi-scale feature extraction;
- Ours w/o spatial fusion: The model with depth maps and multi-scale feature extraction but without spatial fusion;
- Ours: The complete model with depth maps, spatial fusion, and multi-scale feature extraction.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; Wiley: New York, NY, USA, 1976. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. (TOG) 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. Single image dehazing using color attenuation prior. In Proceedings of the BMVC, Nottingham, UK, 1–5 September 2014; Volume 4, pp. 1674–1682. [Google Scholar]
- Chen, C.; Do, M.N.; Wang, J. Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 576–591. [Google Scholar]
- Zhang, J.; Cao, Y.; Fang, S.; Kang, Y.; Wen Chen, C. Fast haze removal for nighttime image using maximum reflectance prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7418–7426. [Google Scholar]
- Berman, D.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1674–1682. [Google Scholar]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 154–169. [Google Scholar]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar]
- Liu, R.; Fan, X.; Hou, M.; Jiang, Z.; Luo, Z.; Zhang, L. Learning aggregated transmission propagation networks for haze removal and beyond. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 2973–2986. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Ren, J.; Su, Z. Learning deep priors for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2492–2500. [Google Scholar]
- Guo, C.L.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image dehazing transformer with transmission-aware 3D position embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5812–5820. [Google Scholar]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X.; Wang, F.; Yang, M.H. Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2157–2167. [Google Scholar]
- Wu, H.; Qu, Y.; Lin, S.; Zhou, J.; Qiao, R.; Zhang, Z.; Xie, Y.; Ma, L. Contrastive learning for compact single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10551–10560. [Google Scholar]
- Yu, H.; Zheng, N.; Zhou, M.; Huang, J.; Xiao, Z.; Zhao, F. Frequency and spatial dual guidance for image dehazing. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 181–198. [Google Scholar]
- Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3253–3261. [Google Scholar]
- Deng, Q.; Huang, Z.; Tsai, C.C.; Lin, C.W. Hardgan: A haze-aware representation distillation gan for single image dehazing. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 722–738. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- Yu, H.; Huang, J.; Liu, Y.; Zhu, Q.; Zhou, M.; Zhao, F. Source-free domain adaptation for real-world image dehazing. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; pp. 6645–6654. [Google Scholar]
- Liu, H.; Wu, Z.; Li, L.; Salehkalaibar, S.; Chen, J.; Wang, K. Towards multi-domain single image dehazing via test-time training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5831–5840. [Google Scholar]
- Zhou, Y.; Chen, Z.; Li, P.; Song, H.; Chen, C.P.; Sheng, B. FSAD-Net: Feedback spatial attention dehazing network. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7719–7733. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Gan, M.; Fan, B.; Chen, C.P. Multiscale cross-connected dehazing network with scene depth fusion. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1598–1612. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhan, J.; He, S.; Dong, J.; Du, Y. Curricular contrastive regularization for physics-aware single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5785–5794. [Google Scholar]
- Wu, R.Q.; Duan, Z.P.; Guo, C.L.; Chai, Z.; Li, C. Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22282–22291. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 2256–2265. [Google Scholar]
- Song, Y.; Ermon, S. Generative modeling by estimating gradients of the data distribution. Adv. Neural Inf. Process. Syst. 2019, 32, 11918–11930. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Nichol, A.Q.; Dhariwal, P. Improved denoising diffusion probabilistic models. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 8162–8171. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef] [PubMed]
- Whang, J.; Delbracio, M.; Talebi, H.; Saharia, C.; Dimakis, A.G.; Milanfar, P. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16293–16303. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Piccinelli, L.; Yang, Y.H.; Sakaridis, C.; Segu, M.; Li, S.; Van Gool, L.; Yu, F. UniDepth: Universal monocular metric depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 10106–10116. [Google Scholar]
- Yang, Y.; Wang, C.; Liu, R.; Zhang, L.; Guo, X.; Tao, D. Self-augmented unpaired image dehazing via density and depth decomposition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2037–2046. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, L.; Pei, S.; Fu, H.; Qin, J.; Zhang, Q.; Wan, L.; Feng, W. From synthetic to real: Image dehazing collaborating with unlabeled real data. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 50–58. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Sbert, M.; Timofte, R. Dense-haze: A benchmark for image dehazing with dense-haze and haze-free images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1014–1018. [Google Scholar]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 2024, 33, 1002–1015. [Google Scholar] [CrossRef]
- Hong, M.; Liu, J.; Li, C.; Qu, Y. Uncertainty-driven dehazing network. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 906–913. [Google Scholar]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, S.; Yuan, Z.; Tong, Q.; Xu, K. Frequency compensated diffusion model for real-scene dehazing. Neural Netw. 2024, 175, 106281. [Google Scholar] [CrossRef]
Methods | SOTS-Indoor | SOTS-Outdoor | HAZE4K | |||
---|---|---|---|---|---|---|
SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | |
Grid [15] | 0.945 | 30.64 | 0.895 | 28.39 | 0.835 | 22.72 |
FFA-Net [22] | 0.961 | 35.20 | 0.955 | 33.00 | 0.938 | 26.36 |
MSBDN [16] | 0.959 | 31.62 | 0.954 | 34.26 | 0.846 | 22.40 |
UDN [45] | 0.961 | 37.61 | 0.952 | 34.34 | 0.860 | 23.14 |
Dehamer [14] | 0.970 | 35.60 | 0.951 | 34.63 | 0.871 | 23.43 |
DehazeFormer [46] | 0.966 | 37.85 | 0.950 | 35.32 | 0.966 | 33.61 |
DEA-Net [44] | 0.969 | 39.00 | 0.957 | 36.02 | 0.976 | 32.64 |
FCDM [47] | 0.971 | 39.40 | 0.961 | 36.12 | 0.978 | 34.08 |
Ours | 0.983 | 39.81 | 0.973 | 37.23 | 0.981 | 36.61 |
Methods | SSIM ↑ | PSNR ↑ |
---|---|---|
Grid [15] | 0.472 | 11.38 |
FFA-Net [22] | 0.487 | 11.68 |
MSBDN [16] | 0.475 | 11.52 |
UDN [45] | 0.480 | 11.61 |
Dehamer [14] | 0.485 | 11.71 |
DehazeFormer [46] | 0.470 | 11.35 |
DEA-Net [44] | 0.491 | 11.80 |
FCDM [47] | 0.496 | 11.85 |
Ours | 0.501 | 11.92 |
Methods | SOTS-Indoor | SOTS-Outdoor | HAZE4K | |||
---|---|---|---|---|---|---|
SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | SSIM↑ | PSNR↑ | |
0.960 | 38.91 | 0.941 | 35.81 | 0.959 | 33.71 | |
0.969 | 39.38 | 0.959 | 36.09 | 0.976 | 34.05 | |
0.973 | 39.60 | 0.965 | 36.15 | 0.978 | 34.10 | |
0.983 | 39.81 | 0.973 | 37.23 | 0.981 | 36.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yang, L.; Dai, S.; Yang, H. HarmoDehazeDiffusion: Multi-Scale Spatial Fusion Network for Dense Haze Removal. Appl. Sci. 2025, 15, 4785. https://doi.org/10.3390/app15094785
Yu J, Yang L, Dai S, Yang H. HarmoDehazeDiffusion: Multi-Scale Spatial Fusion Network for Dense Haze Removal. Applied Sciences. 2025; 15(9):4785. https://doi.org/10.3390/app15094785
Chicago/Turabian StyleYu, Jiangjie, Lina Yang, Shangqing Dai, and Haoyan Yang. 2025. "HarmoDehazeDiffusion: Multi-Scale Spatial Fusion Network for Dense Haze Removal" Applied Sciences 15, no. 9: 4785. https://doi.org/10.3390/app15094785
APA StyleYu, J., Yang, L., Dai, S., & Yang, H. (2025). HarmoDehazeDiffusion: Multi-Scale Spatial Fusion Network for Dense Haze Removal. Applied Sciences, 15(9), 4785. https://doi.org/10.3390/app15094785