The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal Collection
2.2. Signal Processing
2.3. Signal Features Extraction
2.4. Signal Loss and Residual Signal Calculation
2.5. Statistical Analysis
3. Results
3.1. Signal from M. Extensor Carpi Radialis
3.2. Signal from M. Extensor Digitorum Communis
3.3. Signal from M. Extensor Digitorum Lateralis
3.4. Signal from M. Extensor Carpi Ulnaris
4. Discussion
4.1. Key Findings of the Study
4.2. Signal Features After Filtering with the Studied Cut-Off Frequencies
4.3. Effect of the Studied Cut-Off Frequencies on Signal Features
4.4. Future Perspectives and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valentin, S.; Zsoldos, R.R. Surface electromyography in animal biomechanics: A systematic review. J. Electromyogr. Kinesiol. 2016, 28, 167–183. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst–Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (cede) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef]
- Smit, I.H.; Parmentier, J.I.; Rovel, T.; van Dieen, J.; Bragança, F.S. Towards standardisation of surface electromyography measurements in the horse: Bipolar electrode location. J. Electromyogr. Kinesiol. 2024, 76, 102884. [Google Scholar] [CrossRef] [PubMed]
- St. George, L.S.; Hobbs, S.J.; Richards, J.; Sinclair, J.; Holt, D.; Roy, S. The effect of cut–off frequency when high–pass filtering equine SEMG signals during locomotion. J. Electromyogr. Kinesiol. 2018, 43, 28–40. [Google Scholar] [CrossRef]
- St. George, L.S.; Roy, S.; Richards, J.; Sinclair, J.; Hobbs, S.J. Surface EMG signal normalisation and filtering improves sensitivity of equine gait analysis. Comp. Exerc. Physiol. 2019, 15, 173–186. [Google Scholar] [CrossRef]
- Pilliner, S.; Elmhurst, S.; Davies, Z. The Horse in Motion, 1st ed.; Blackwell Scientific Publications: Oxford, UK, 2009; pp. 29–32. [Google Scholar]
- Back, W.; Schamhardt, H.C.; Savelberg, H.H.C.M.; Van den Bogert, A.J.; Bruin, G.; Hartman, W.; Barneveld, A. How the horse moves: 1. Significance of graphical representations of equine forelimb kinematics. Equine Vet. J. 1995, 27, 31–38. [Google Scholar] [CrossRef]
- Clayton, H.M.; Sha, D.; Stick, J.A.; Mullineaux, D.R. Three-dimensional carpal kinematics of trotting horses. Equine Vet. J. 2004, 36, 671–676. [Google Scholar] [CrossRef]
- Spadavecchia, C.; Spadavecchia, L.; Andersen, O.K.; Arendt–Nielsen, L.; Leandri, M.; Schatzmann, U. Quantitative assessment of nociception in horses by use of the nociceptive withdrawal reflex evoked by transcutaneous electrical stimulation. Am. J. Vet. Res. 2002, 63, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Zellner, A.; Bockstahler, B.; Peham, C. The effects of kinesio taping on the trajectory of the forelimb and the muscle activity of the musculus brachiocephalicus and the musculus extensor carpi radialis in horses. PLoS ONE 2017, 12, e0186371. [Google Scholar] [CrossRef] [PubMed]
- Rankins, E.M.; Salem, K.; Manso Filho, H.C.; Malinowski, K.; McKeever, K.H. Effect of clenbuterol on muscle activity during exercise in standardbred horses. J. Equine Vet. Sci. 2022, 118, 104126. [Google Scholar] [CrossRef] [PubMed]
- Spadavecchia, C.; Arendt–Nielsen, L.; Andersen, O.K.; Spadavecchia, L.; Doherr, M.; Schatzmann, U. Comparison of nociceptive withdrawal reflexes and recruitment curves between the forelimbs and hind limbs in conscious horses. Am. J. Vet. Res. 2003, 64, 700–707. [Google Scholar] [CrossRef]
- Spadavecchia, C.; Andersen, O.K.; Arendt–Nielsen, L.; Spadavecchia, L.; Doherr, M.; Schatzmann, U. Investigation of the facilitation of the nociceptive withdrawal reflex evoked by repeated transcutaneous electrical stimulations as a measure of temporal summation in conscious horses. Am. J. Vet. Res. 2004, 65, 901–908. [Google Scholar] [CrossRef]
- Spadavecchia, C.; Levionnois, O.; Kronen, P.; Andersen, O.K. The effects of isoflurane minimum alveolar concentration on withdrawal reflex activity evoked by repeated transcutaneous electrical stimulation in ponies. Vet. J. 2010, 183, 337–344. [Google Scholar] [CrossRef]
- De Luca, C.J.; Gilmore, L.D.; Kuznetsov, M.; Roy, S.H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Signal Analyser in Matlab 2024. Available online: https://www.mathworks.com/help/signal/ref/signalanalyzer–app.html (accessed on 12 December 2024).
- Stefanik, E. Characteristics of Myoelectric Activity of Selected Equine Skeletal Muscles. Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2025; p. 122. [Google Scholar]
- St. George, L.; Clayton, H.M.; Sinclair, J.; Richards, J.; Roy, S.H.; Hobbs, S.J. Muscle function and kinematics during submaximal equine jumping: What can objective outcomes tell us about athletic performance indicators? Animals 2021, 11, 414. [Google Scholar] [CrossRef]
- St. George, L.B.; Clayton, H.M.; Sinclair, J.K.; Richards, J.; Roy, S.H.; Hobbs, S.J. Electromyographic and Kinematic Comparison of the Leading and Trailing Fore–and Hindlimbs of Horses during Canter. Animals 2023, 13, 1755. [Google Scholar] [CrossRef]
- St. George, L.B.; Spoormakers, T.J.; Smit, I.H.; Hobbs, S.J.; Clayton, H.M.; Roy, S.H.; van Weeren, P.R.; Richards, J.; Serra Bragança, F.M. Adaptations in equine appendicular muscle activity and movement occur during induced fore–and hindlimb lameness: An electromyographic and kinematic evaluation. Front. Vet. Sci. 2022, 9, 989522. [Google Scholar] [CrossRef]
- St. George, L.B.; Spoormakers, T.J.P.; Hobbs, S.J.; Clayton, H.M.; Roy, S.H.; Serra Braganca, F.M. Which sEMG variable best distinguishes between non–lame and induced lameness conditions in horses? Comp. Exerc. Physiol. 2023, 19, S16. [Google Scholar]
- Busse, N.I.; Gonzalez, M.L.; Krason, M.L.; Johnson, S.E. β–Hydroxy β–methylbutyrate supplementation to adult Thoroughbred geldings increases type IIA fiber content in the gluteus medius. J. Anim. Sci. 2021, 99, skab264. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Mukai, K.; Ohmura, H.; Takahashi, T. Do Muscle Activities of M. Splenius and M. Brachiocephalicus Decrease Because of Exercise–Induced Fatigue in Thoroughbred Horses? J. Equine Vet. Sci. 2020, 86, 102901. [Google Scholar] [CrossRef]
- Knaggs, H.; Tabor, G.; Williams, J.M. An initial investigation into the effects of the equine transeva technique (pulsating current electrotherapy) on the equine Gluteus superficialis. Comp. Exerc. Physiol. 2022, 18, 27–35. [Google Scholar] [CrossRef]
- van Weeren, P.R.; van den Bogert, A.; Barneveld, A. Quantification of skin displacement in the proximal parts of the limbs of the walking horse. Equine Vet. J. 1990, 22 (Suppl. S9), 110–118. [Google Scholar] [CrossRef]
- van Weeren, P.R.; van den Bogert, A.J.; Barneveld, A. A quantitative analysis of skin displacement in the trotting horse. Equine Vet. J. 1990, 22 (Suppl. S9), 101–109. [Google Scholar] [CrossRef]
- Hjerten, G.; Drevemo, S.; Eriksson, L.E. Shortening of the hind limb in the horse during the stance phase. Equine Vet. J. 1994, 26 (Suppl. S17), 48–50. [Google Scholar] [CrossRef]
- Merkens, H.W.; Schamhardt, H.C.; Osch, G.J.; Bogert, A.V.D. Ground reaction force patterns of Dutch Warmblood horses at normal trot. Equine Vet. J. 1993, 25, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Merkens, H.W.; Schamhardt, H.C.; Van Osch, G.J.; Hartman, W. Ground reaction force patterns of Dutch Warmbloods at the canter. Am. J. Vet. Res. 1993, 54, 670–674. [Google Scholar] [CrossRef]
- Lowery, M.M.; Stoykov, N.S.; Kuiken, T.A. A simulation study to examine the use of cross–correlation as an estimate of surface EMG cross talk. J. Appl. Physiol. 2003, 94, 1324–1334. [Google Scholar] [CrossRef]
- Ursini, T.; Shaw, K.; Levine, D.; Richards, J.; Adair, H.S. Electromyography of the multifidus muscle in horses trotting during therapeutic exercises. Front. Vet. Sci. 2022, 9, 844776. [Google Scholar] [CrossRef]
- Wijnberg, I.D.; Franssen, H. The potential and limitations of quantitative electromyography in equine medicine. Vet. J. 2016, 209, 23–31. [Google Scholar] [CrossRef]
- Merletti, R.; Di Torino, P.J.J.E.K. Standards for reporting EMG data. J. Electromyogr. Kinesiol. 1999, 9, 3–4. [Google Scholar]
- Robert, C.; Valette, J.P.; Pourcelot, P.; Audigie, F.; Denoix, J.M. Effects of trotting speed on muscle activity and kinematics in saddlehorses. Equine Vet. J. 2002, 34 (Suppl. S34), 295–301. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Valette, J.P.; Degueurce, C.; Denoix, J.M. Correlation between surface electromyography and kinematics of the hindlimb of horses at trot on a treadmill. Cells Tissues Organs 1999, 165, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Crook, T.C.; Wilson, A.; Hodson-Tole, E. The effect of treadmill speed and gradient on equine hindlimb muscle activity. Equine Vet. J. 2010, 42, 412–416. [Google Scholar] [CrossRef]
- Aman, J.E.; Valberg, S.J.; Elangovan, N.; Nicholson, A.; Lewis, S.S.; Konczak, J. Abnormal locomotor muscle recruitment activity is present in horses with shivering and Purkinje cell distal axonopathy. Equine Vet. J. 2018, 50, 636–643. [Google Scholar] [CrossRef]
Gait | Signal Variation | Amplitude [mV] | RMS [mV] | MF [Hz] | SNR [dB] |
---|---|---|---|---|---|
Walk | Raw | 95.3 (76.3; 109.1) a | 21.6 (19.6; 22.7) a | 42.9 (39.2; 47.4) a | 11.6 (10.3; 12.9) a |
Low-pass 10 Hz | 29.2 (26.0; 32.3) b | 17.0 (15.6; 18.3) b | 3.1 (3.0; 3.2) b | 11.0 (10.2; 13.0) a | |
Bandpass 40–450 Hz | 78.9 (65.9; 88.4) c | 14.9 (13.2; 16.5) c | 72.5 (69.9; 78.5) c | 13.2 (11.5; 14.1) ab | |
Bandpass 7–200 Hz | 88.4 (72.0; 99.9) ac | 20.6 (18.9; 21.9) d | 43.9 (40.6; 47.9) a | 13.4 (11.8; 14.2) b | |
p–value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Trot | Raw | 426.8 (381.5; 487.4) a | 105.6 (97.4; 110.8) a | 51.0 (46.4; 57.8) a | 13.6 (12.5; 14.7) a |
Low-pass 10 Hz | 152.9 (136.1; 171.1) b | 83.9 (78.3; 90.8) b | 4.2 (3.9; 4.4) b | 12.6 (11.3; 14.2) b | |
Bandpass 40–450 Hz | 366.5 (334.2; 454.7) c | 78.8 (67.0; 82.8) c | 82.3 (74.4; 88.2) c | 16.6 (15.5; 17.3) c | |
Bandpass 7–200 Hz | 399.3 (346.6; 444.9) c | 101.7 (93.1; 107.1) d | 47.0 (43.3; 56.4) d | 14.9 (13.9; 16.6) d | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Gait | Signal Variation | Signal Loss (Residual Signal) per Horse | Common Signal Loss (Residual Signal) | ||
---|---|---|---|---|---|
Horse 1 | Horse 2 | Horse 3 | |||
Walk | Low-pass 10 Hz | 19.9% (80.1%) | 20.4% (79.6%) | 20.7% (79.3%) | 20.3% (79.9%) a |
Walk | Bandpass 40–450 Hz | 30.2% (69.8%) | 30.9% (69.1%) | 31.4% (68,6%) | 30.9% (69.1%) b |
Walk | Bandpass 7–200 Hz | 4.3% (95.7%) | 4.6% (95.4%) | 5.2% (94.8%) | 4.7% (95.3%) c |
p-value | <0.0001 | ||||
Trot | Low-pass 10 Hz | 21.0% (79.0%) | 19.2% (80.8.%) | 19.2% (80.8.%) | 19.8% (80.2%) a |
Trot | Bandpass 40–450 Hz | 24.9% (75.1%) | 26.8% (73.2%) | 28.7% (71.3%) | 26.8% (73.2%) b |
Trot | Bandpass 7–200 Hz | 3.7% (96.3%) | 4.2% (95.8%) | 4.2% (95.8%) | 4.1% (95.9%) c |
p-value | <0.0001 |
Gait | Signal Variation | Amplitude [mV] | RMS [mV] | MF [Hz] | SNR [dB] |
---|---|---|---|---|---|
Walk | Raw | 142.5 (110.5; 160.0) a | 28.8 (24.9; 33.8) a | 72.4 (58.7; 84.8) a | 13.3 (12.3; 14.0) a |
Low-pass 10 Hz | 34.2 (29.3; 39.8) b | 21.7 (19.2; 24.5) b | 5.6 (5.0; 6.1) b | 12.5 (11.0; 13.2) b | |
Bandpass 40–450 Hz | 117.6 (96.3; 143.0) c | 23.4 (18.0; 28.4) b | 109.1 (100.4; 123.3) c | 16.6 (14.7; 17.9) c | |
Bandpass 7–200 Hz | 114.2 (91.9; 146.3) c | 26.2 (21.3; 30.7) c | 60.9 (50.2; 73.5) a | 13.3 (12.1; 13.9) a | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Trot | Raw | 1040.0 (841.0; 1227.0) a | 191.7 (154.4; 236.8) a | 62.6 (53.7; 73.1) a | 13.9 (11.8; 15.1) a |
Low-pass 10 Hz | 312.1 (230.5; 354.0) b | 144.0 (118.2; 179.7) b | 7.0 (5.9; 8.0) b | 12.6 (10.8; 14.9) b | |
Bandpass 40–450 Hz | 844.0 (653.8; 1026.0) c | 156.3 (116.0; 199.1) c | 89.0 (79.3; 100.7) c | 16.9 (14.6; 18.5) c | |
Bandpass 7–200 Hz | 924.3 (738.6; 1116.0) d | 186.7 (149 0; 227.3) d | 58.2 (51.5; 71.7) d | 14.2 (12.2; 15.7) d | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Gait | Signal Variation | Signal Loss (Residual Signal) per Horse | Common Signal Loss (Residual Signal) | ||
---|---|---|---|---|---|
Horse 1 | Horse 2 | Horse 3 | |||
Walk | Low-pass 10 Hz | 24.2% (75.8%) | 24.1% (75.9%) | 26.5% (73.5%) | 24.9% (75.1%) a |
Walk | Bandpass 40–450 Hz | 21.7% (78.3%) | 24.7% (75.3%) | 16.4% (83.6%) | 20.9% (79.1%) b |
Walk | Bandpass 7–200 Hz | 12.8% (87.2%) | 13.6% (86.4%) | 9.1% (90.9%) | 11.8% (88.2%) c |
p-value | <0.0001 | ||||
Trot | Low-pass 10 Hz | 25.3% (74.7%) | 24.4% (75.6%) | 22.7% (77.3%) | 24.1% (75.9%) a |
Trot | Bandpass 40–450 Hz | 19.5% (80.5%) | 20.6% (79.1%) | 19.8% (80.2%) | 20.1% (79.9%) b |
Trot | Bandpass 7–200 Hz | 4.5% (95.5%) | 3.2% (96.8%) | 3.3% (96.7%) | 3.7% (96.3%) c |
p-value | <0.0001 |
Gait | Signal Variation | Amplitude [mV] | RMS [mV] | MF [Hz] | SNR [dB] |
---|---|---|---|---|---|
Walk | Raw | 651.8 (598.2; 795.4) a | 122.5 (110.6; 128.2) a | 189.0 (164.8; 205.4) a | 19.1 (18.3; 19.6) a |
Low-pass 10 Hz | 142.3 (130.5; 164.3) b | 85.9 (77.1; 92.5) b | 5.4 (5.1; 5.8) b | 17.3 (16.1; 18.0) b | |
Bandpass 40–450 Hz | 648.4 (586.5; 714.4) c | 112.8 (100.1; 119.1) c | 189.3 (168.1; 203.6) c | 24.8 (22.8; 26.7) c | |
Bandpass 7–200 Hz | 427.8 (354.1; 485.0) d | 81.5 (73.7; 94.1) b | 107.3 (102.0; 114.4) d | 18.3 (16.8; 19.0) b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Trot | Raw | 1390.0 (1145.0; 1615.0) a | 234.3 (210.4; 289.7) a | 178.5 (165.1; 192.8) a | 16.6 (15.5; 17.6) a |
Low-pass 10 Hz | 282.3 (244.6; 324.8) b | 170.3 (150.3; 196.7) b | 5.3 (5.0; 5.7) b | 14.9 (14.0; 16.0) b | |
Bandpass 40–450 Hz | 1258.0 (950.0; 1563.0) c | 213.9 (184.9; 265.7) c | 190.0 (168.3; 198.9) c | 21.8 (20 7; 23.7) c | |
Bandpass 7–200 Hz | 913.6 (622.2; 1101.0) d | 163.8 (145.4; 198.0) b | 91.1 (87.1; 102.5) d | 13.8 (12.5; 15.5) b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Gait | Signal Variation | Signal Loss (Residual Signal) per Horse | Common Signal Loss (Residual Signal) | ||
---|---|---|---|---|---|
Horse 1 | Horse 2 | Horse 3 | |||
Walk | Low-pass 10 Hz | 30.5% (69.5%) | 29.5% (70.5%) | 28.3% (71.7%) | 29.4% (70.6%) a |
Walk | Bandpass 40–450 Hz | 7.3% (92.7%) | 8.6% (91.4%) | 7.7% (92.3%) | 7.9% (92.1%) b |
Walk | Bandpass 7–200 Hz | 32.0% (68.0%) | 29.8% (70.2%) | 34.4% (65.6%) | 32.1% (67.9%) a |
p-value | <0.0001 | ||||
Trot | Low-pass 10 Hz | 30.4% (69.6%) | 28.0% (72.0%) | 28.3% (71.7%) | 28.9% (71.1%) a |
Trot | Bandpass 40–450 Hz | 8.9% (91.1%) | 9.7% (90.3%) | 10.6% (89.4%) | 9.7% (90.3%) b |
Trot | Bandpass 7–200 Hz | 32.2% (67.8%) | 29.4% (70.6%) | 28.9% (71.1%) | 30.1% (69.9%) a |
p-value | <0.0001 |
Gait | Signal Variation | Amplitude [mV] | RMS [mV] | MF [Hz] | SNR [dB] |
---|---|---|---|---|---|
Walk | Raw | 726.8 (548.8; 819.6) a | 121.9 (107.4; 133.6) a | 169.0 (155.8; 182.0) a | 19.2 (18.0; 20.2) a |
Low-pass 10 Hz | 168.2 (128.1; 188.6) b | 90.6 (78.7; 97.0) b | 5.5 (5.1; 6.0) b | 18.0 (16.6; 19.1) b | |
Bandpass 40–450 Hz | 630.1 (523.4; 796.2) a | 113.4 (98.3; 126.8) c | 177.0 (161.0; 186.9) c | 24.4 (23.1; 26.1) c | |
Bandpass 7–200 Hz | 473.5 (359.9; 553.7) c | 87.4 (75.6; 94.6) b | 101.3 (94.5; 114.5) d | 18.0 (16.7; 19.1) b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Trot | Raw | 1317.0 (1089.0; 1672.0) a | 248.1 (214.3; 304.6) a | 160.6 (150.4; 180.2) a | 14.5 (14.0; 15.5) a |
Low-pass 10 Hz | 368.8 (280.0; 422.4) b | 190.4 (165.1; 226.3) b | 5.4 (5.0; 6.1) b | 13.6 (12.8; 14.5) b | |
Bandpass 40–450 Hz | 1171.0 (923.3; 1491.0) a | 218.4 (190.4; 273.7) c | 176.9 (161.6; 191.8) c | 20.3 (19.2; 21.2) c | |
Bandpass 7–200 Hz | 875.4 (702.2; 1055.0) c | 189.0 (154.6; 241.0) b | 95.7 (86.6; 106.9) d | 13.1 (12.2; 13.9) b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Gait | Signal Variation | Signal Loss (Residual Signal) per Horse | Common Signal Loss (Residual Signal) | ||
---|---|---|---|---|---|
Horse 1 | Horse 2 | Horse 3 | |||
Walk | Low-pass 10 Hz | 27.0% (73.0%) | 27.7% (72.3%) | 26.6% (73.4%) | 27.1% (72.9%) a |
Walk | Bandpass 40–450 Hz | 7.7% (92.3%) | 7.6% (92.4%) | 6.1% (93.9%) | 7.2% (92.8%) b |
Walk | Bandpass 7–200 Hz | 27.8% (72.2%) | 27.8% (72.2%) | 28.3% (71.7%) | 27.5% (72.5%) a |
p-value | < 0.0001 | ||||
Trot | Low-pass 10 Hz | 26.4% (73.6%) | 22.9% (77.1%) | 23.6% (76.4%) | 24.3% (75.7%) a |
Trot | Bandpass 40–450 Hz | 11.1% (88.9%) | 9.6% (90.4%) | 11.2% (88.8%) | 10.7% (89.3%) b |
Trot | Bandpass 7–200 Hz | 25.9% (74.1%) | 28.8% (71.2%) | 23.1% (76.9%) | 25.9% (74.1%) a |
p-value | < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domino, M.; Borowska, M.; Stefanik, E.; Domańska-Kruppa, N.; Turek, B. The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles. Appl. Sci. 2025, 15, 4737. https://doi.org/10.3390/app15094737
Domino M, Borowska M, Stefanik E, Domańska-Kruppa N, Turek B. The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles. Applied Sciences. 2025; 15(9):4737. https://doi.org/10.3390/app15094737
Chicago/Turabian StyleDomino, Małgorzata, Marta Borowska, Elżbieta Stefanik, Natalia Domańska-Kruppa, and Bernard Turek. 2025. "The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles" Applied Sciences 15, no. 9: 4737. https://doi.org/10.3390/app15094737
APA StyleDomino, M., Borowska, M., Stefanik, E., Domańska-Kruppa, N., & Turek, B. (2025). The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles. Applied Sciences, 15(9), 4737. https://doi.org/10.3390/app15094737