Saccharomyces cerevisiae’s Response to Dysprosium Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Media
2.2. Preparation of Protoplast and Cell Wall Solution
2.3. Detection of ROS Contents in Yeast Cells
2.4. Analysis of Dy Content
2.5. Gene Expression Analysis Through mRNA-Seq
2.6. Analysis of Gene Expression Ratio (2 − Δ(ΔCt)) in Dy-Absorbing Culture Through Quantitative Real-Time Polymerase Chain Reaction (qRT PCR)
2.7. Statistical Analysis
3. Results
3.1. Effect of Dy3+ on S. cerevisiae Growth
3.2. Dy Absorption in S. cerevisiae Cells Cultured in Dy-Containing Medium
3.3. Transcriptional Analysis of Dy-Dependent Differential Gene Expression
3.4. mRNA Analysis Through qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kishida, M.; Kakita, K. Dysprosium absorption of aluminum tolerant- and absorbing-yeast. Appl. Sci. 2022, 12, 4352. [Google Scholar] [CrossRef]
- Pallares, R.M.; David Faulkner, D.; An, D.D.; Solène Hébert, S.; Loguinov, A.; Proctor, M.; Villalobos, J.A.; Bjornstad, K.A.; Rosen, C.J.; Vulpe, C.; et al. Genome-wide toxicogenomic study of the lanthanides sheds light on the selective toxicity mechanisms associated with critical materials. Proc. Natl. Acad. Sci. USA 2021, 118, e2025952118. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, S.; Yamamoto, K.; Nakajima, Y.; Takeda, S.; Kurahashi, K.; Tokumoto, H. Absorption of zinc ions dissolved from zinc oxide nanoparticles in the tobacco callus improves plant productivity. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 138, 377–385. [Google Scholar] [CrossRef]
- Terashima, H.; Yabuki, N.; Arisawa, M.; Hamada, K.; Kitada, K. Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol. Gen. Genet. 2000, 264, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.G.; Elsztein, C.; Strahl, S.; de Morais Junior, M.A. The Saccharomyces cerevisiae Ncw2 protein works on the chitin/β-glucan organisation of the cell wall. Antonie Van Leeuwenhoek 2021, 114, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Toh-e, A.; Yasunaga, S.; Nisogi, H.; Tanaka, K.; Oguchi, T.; Matsui, Y. Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 1993, 9, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Kapteyn, J.C.; Van Egmond, P.; Sievi, E.; Van Den Ende, H.; Makarow, M.; Klis, F.M. The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1, 6-glucan-deficient mutants. Mol. Microbiol. 1999, 31, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Cabib, E. Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta (1-6)- and beta (1-3)-glucan in the Saccharomyces cerevisiae cell wall. Eukaryot. Cell 2009, 8, 1626–1636. [Google Scholar] [CrossRef] [PubMed]
- Devenish, R.J.; Prescott, M.; Roucou, X.; Nagley, P. Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim. Biophys. Acta 2000, 1458, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Vaudano, E.; Noti, O.; Costantini, A.; Garcia-Moruno, E. Identification of reference genes suitable for normalization of RT-qPCR expression data in Saccharomyces cerevisiae during alcoholic fermentation. Biotechnol. Lett. 2011, 33, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.E.; Oh, C.S.; Jiang, Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim. Biophys. Acta 2007, 1771, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, M.; Moll, H.; Merroun, M.L. Reversible pH-dependent curium(III) biosorption by the bentonite yeast isolate Rhodotorula mucilaginosa BII-R8. J. Hazard Mater. 2019, 370, 156–163. [Google Scholar] [CrossRef] [PubMed]
Culture | Dy Content (nmol/mg DCW *) | ||
---|---|---|---|
Time (h) | Intact Cells | Protoplasts | Cell Wall Solution |
12 | 7.9 ± 3.5 | 3.7 ± 1.3 | 2.6 ± 0.8 |
18 | 11.8 ± 3.2 | 5.5 ± 1.5 | 6.0 ± 1.2 |
24 | 18.5 ± 0.5 | 8.6 ± 0.6 | 7.2 ± 2.3 |
48 | 19.0 ± 0.3 | 9.7 ± 1.1 | 7.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishida, M.; Yoshihara, S. Saccharomyces cerevisiae’s Response to Dysprosium Exposure. Appl. Sci. 2025, 15, 4426. https://doi.org/10.3390/app15084426
Kishida M, Yoshihara S. Saccharomyces cerevisiae’s Response to Dysprosium Exposure. Applied Sciences. 2025; 15(8):4426. https://doi.org/10.3390/app15084426
Chicago/Turabian StyleKishida, Masao, and Shizue Yoshihara. 2025. "Saccharomyces cerevisiae’s Response to Dysprosium Exposure" Applied Sciences 15, no. 8: 4426. https://doi.org/10.3390/app15084426
APA StyleKishida, M., & Yoshihara, S. (2025). Saccharomyces cerevisiae’s Response to Dysprosium Exposure. Applied Sciences, 15(8), 4426. https://doi.org/10.3390/app15084426