Acute Effects of Different Intensities of Flywheel Half Squat Based on Velocity on Vertical Jump Performance in High-Level Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Intervention Program
2.3.1. Motor Learning
2.3.2. Flywheel Training Device and Inertia Settings
Medium-speed condition (0.65–0.75 m/s) → MOI = 0.050 kg·m2;
Slow-speed condition (0.35–0.45 m/s) → MOI = 0.075 kg·m2.
2.3.3. Flywheel Resistance Protocol
2.4. Outcome Measurements
2.4.1. Peak Impact Force
2.4.2. Peak Vertical Ground Reaction Force
2.4.3. Knee Joint Extension Moment
2.4.4. Knee Joint Power
2.4.5. Average Power Output
2.5. Data Analysis
3. Results
3.1. Ground Reaction Forces and Joint Dynamics
3.1.1. Peak Collision Force
3.1.2. Peak Extension Force
3.1.3. Eccentric Power of the Knee Joint
3.1.4. Concentric Power of the Knee Joint
3.1.5. Knee Extension Moment
3.2. Reactive Strength Index, Average Power Output, and Vertical Jump Height
3.2.1. Reactive Strength Index
3.2.2. Results of Average Power Output
3.2.3. Vertical Jump Height
4. Discussion
4.1. Ground Reaction Force and Extension Performance
4.2. Knee Joint Kinetic Performance: Eccentric Power, Concentric Power, and Extension Moment
4.3. Reactive Strength and Power Output Performance
4.4. Practical Implications and Training Recommendations
4.5. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Plisk, S.; Collins, D. Training principles: Evaluation of modes and methods of resistance training—A coaching perspective. Sports Biomech. 2002, 1, 79–103. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.P.; Grgic, J.; Cunha, P.M.; Ribeiro, A.S.; Schoenfeld, B.J.; de Salles, B.F.; Cyrino, E.S. What influence does resistance exercise order have on muscular strength gains and muscle hypertrophy? A systematic review and meta-analysis. Eur. J. Sport Sci. 2021, 21, 149–157. [Google Scholar] [CrossRef]
- Nájera-Ferrer, P.; Pérez-Caballero, C.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of exercise sequence and velocity loss threshold during resistance training on following endurance and strength performance during concurrent training. Int. J. Sports Physiol. Perform. 2021, 16, 811–817. [Google Scholar] [CrossRef]
- Banyard, H.G.; Tufano, J.J.; Delgado, J.; Thompson, S.W.; Nosaka, K. Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. Int. J. Sports Physiol. Perform. 2019, 14, 246–255. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Yañez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef]
- Liao, K.F.; Wang, X.X.; Han, M.Y.; Li, L.L.; Nassis, G.P.; Li, Y.M. Effects of velocity-based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A systematic review with meta-analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and muscle-size effects of flywheel resistance training with eccentric overload in professional handball players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (YoYo™) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef]
- Beato, M.; Bigby, A.E.J.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE 2019, 14, e0222466. [Google Scholar] [CrossRef] [PubMed]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The flywheel leg-curl machine: Offering eccentric overload for hamstring development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Krzysztofik, M.; Wilk, M.; Stastny, P.; Golas, A. Post-activation performance enhancement in the bench press throw: A systematic review and meta-analysis. Front. Physiol. 2021, 11, 598628. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef]
- Rassier, D.E. The effects of length on fatigue and twitch potentiation in human skeletal muscle. Clin. Physiol. 2000, 20, 474–482. [Google Scholar] [CrossRef]
- Chiu, L.Z.; Fry, A.C.; Weiss, L.W.; Schilling, B.K.; Brown, L.E.; Smith, S.L. Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 2003, 17, 671–677. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Bevan, H.R.; Kingsley, M.I.; Owen, N.J.; Bennett, M.A.; Bunce, P.J.; Hore, A.M.; Maw, J.R.; Cunningham, D.J. Postactivation potentiation in professional rugby players: Optimal recovery. J. Strength Cond. Res. 2007, 21, 1134–1138. [Google Scholar] [CrossRef]
- Esformes, J.I.; Bampouras, T.M. Effect of back squat depth on lower-body postactivation potentiation. J. Strength Cond. Res. 2013, 27, 2997–3000. [Google Scholar] [CrossRef]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Spudić, D.; Strojnik, V.; Štirn, I.; Pori, P.; Šarabon, N. Effects of flywheel resistance training on countermovement jump performance and vastus lateralis muscle stiffness: A controlled study. J. Sports Sci. 2024, 42, 2412–2423. [Google Scholar] [CrossRef] [PubMed]
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.B.; Pettersen, S.A. Flywheel squats versus free weight high load squats for improving high velocity movements in football: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef]
- Rossi, C.; Vasiljevic, I.; Manojlovic, M.; Trivic, T.; Ranisavljev, M.; Stajer, V.; Thomas, E.; Bianco, A.; Drid, P. Optimizing strength training protocols in young females: A comparative study of velocity-based and percentage-based training programs. Heliyon 2024, 10, e30644. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Fu, K.; Chen, L.; Poon, E.T.; Wang, R.; Li, Q.; Liu, H.; Ho, I.M.K. Post-activation performance enhancement of flywheel training on lower limb explosive power performance. Front. Physiol. 2023, 14, 1217045. [Google Scholar] [CrossRef]
- Rebelo, A.; Pereira, J.R.; Martinho, D.V.; Duarte, J.P.; Coelho-E-Silva, M.J.; Valente-Dos-Santos, J. How to improve the Reactive Strength Index among male athletes? A systematic review with meta-analysis. Healthcare 2022, 10, 593. [Google Scholar] [CrossRef]
- Vandenboom, R. Modulation of skeletal muscle contraction by myosin phosphorylation. Compr. Physiol. 2016, 7, 171–212. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- von Walden, F.; Hjalmarsson, E.; Reimeringer, M.; Kvist, O.; Raffalt, P.C.; Pontén, E.; Fernandez-Gonzalo, R. Comparative analysis of power, work and muscle activation during weight-stack and iso-inertial flywheel resistance exercise in young adults with cerebral palsy. J. Rehabil. Med. 2020, 52, jrm00060. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yan, B.; Yu, M.; Wang, Z.; Wang, Y.; Liu, H.; Zhang, W.; Girard, O. Heavier loads in flywheel exercise induce greater post-activation performance enhancement in countermovement jumps compared to heavy Smith machine squats in males. Biol. Sport. 2024, 41, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Nuñez Sanchez, F.J.; Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Camargo, P.R.; Alburquerque-Sendín, F.; Salvini, T.F. Eccentric training as a new approach for rotator cuff tendinopathy: Review and perspectives. World J. Orthop. 2014, 5, 634–644. [Google Scholar] [CrossRef]
- Caruso, J.F.; Hernandez, D.A.; Porter, A.; Schweikert, T.; Saito, K.; Cho, M.; De Garmo, N.; Nelson, N.M. Integrated electromyography and performance outcomes to inertial resistance exercise. J. Strength Cond. Res. 2006, 20, 151–156. [Google Scholar] [CrossRef]
- Martín-Rivera, F.; Beato, M.; Alepuz-Moner, V.; Maroto-Izquierdo, S. Use of concentric linear velocity to monitor flywheel exercise load. Front. Physiol. 2022, 13, 961572. [Google Scholar] [CrossRef]
- Stojanović, M.D.M.; Mikić, M.; Drid, P.; Calleja-González, J.; Maksimović, N.; Belegišanin, B.; Sekulović, V. Greater power but not strength gains using flywheel versus equivolumed traditional strength training in junior basketball players. Int. J. Environ. Res. Public Health 2021, 18, 1181. [Google Scholar] [CrossRef]
- Harris-Love, M.O.; Gollie, J.M.; Keogh, J.W.L. Eccentric exercise: Adaptations and applications for health and performance. J. Funct. Morphol. Kinesiol. 2021, 6, 96. [Google Scholar] [CrossRef]
- Krishnan, C.; Allen, E.J.; Williams, G.N. Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 2011, 43, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial eccentric-overload training in young soccer players: Effects on strength, sprint, change of direction, agility and soccer shooting precision. J. Sports Sci. Med. 2020, 19, 213–223. [Google Scholar] [PubMed] [PubMed Central]
- Rassier, D.E.; Macintosh, B.R. Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. 2000, 33, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Onambélé, G.L.; Maganaris, C.N.; Mian, O.S.; Tam, E.; Rejc, E.; McEwan, I.M.; Narici, M.V. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J. Biomech. 2008, 41, 3133–3138. [Google Scholar] [CrossRef]
- Shimizu, T.; Tsuchiya, Y.; Ueda, H.; Izumi, S.; Ochi, E. Eight-week flywheel training enhances jump performance and stretch-shortening cycle function in collegiate basketball players. Eur. J. Sport Sci. 2025, 25, e12257. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Huang, K.; Huang, H.; Zhang, Y.; Yuan, X. Effects of inertial flywheel training vs. accentuated eccentric loading training on strength, power, and speed in well-trained male college sprinters. Life 2024, 14, 1081. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Pozzo, M.; Floria, P. Real-time mechanical responses to overload and fatigue using a flywheel training device. J. Biomech. 2021, 121, 110429. [Google Scholar] [CrossRef]
- McErlain-Naylor, S.A.; Beato, M. Post flywheel squat potentiation of vertical and horizontal ground reaction force parameters during jumps and changes of direction. Sports 2021, 9, 5. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A systematic review with meta-analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Hortobágyi, T.; DeVita, P.; LaStayo, P. Letter: Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J. Biomech. 2009, 42, 956; author reply 957. [Google Scholar] [CrossRef]
- Petré, H.; Ovendal, A.; Westblad, N.; Ten Siethoff, L.; Rosdahl, H.; Psilander, N. Effect of the intrasession exercise order of flywheel resistance and high-intensity interval training on maximal strength and power performance in elite team-sport athletes. J. Strength Cond. Res. 2023, 37, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- McErlain-Naylor, S.A.; Beato, M. Concentric and eccentric inertia-velocity and inertia-power relationships in the flywheel squat. J. Sports Sci. 2021, 39, 1136–1143. [Google Scholar] [CrossRef]
Age (y) | Height (m) | Weight (kg) | BMI | Training Duration (y) |
---|---|---|---|---|
20.14 ± 0.93 | 1.81 ± 0.06 | 72.65 ± 10.27 | 22.06 ± 2.45 | 5.86 ± 2.72 |
Intensity | Time | PCF (N/kg) | d vs. Baseline 95% CI | PEF (N/kg) | d vs. Baseline |
---|---|---|---|---|---|
Baseline | 20.82 ± 4.68 | - | 16.04 ± 3.61 | - | |
Fast speed | 30 s | 19.69 ± 4.65 | 0.24 [−0.20, 0.68] | 14.31 ± 2.31 * | 0.52 [0.08, 0.96] |
4 min | 23.29 ± 4.32 # | 0.54 [0.10, 0.98] | 18.71 ± 3.38 *,# | 0.75 [0.30, 1.20] | |
8 min | 23.62 ± 4.44 *,# | 0.59 [0.15, 1.03] | 18.41 ± 3.47 *,# | 0.67 [0.22, 1.12] | |
12 min | 23.31 ± 4.62 # | 0.54 [0.10, 0.98] | 18.74 ± 3.69 *,# | 0.77 [0.32, 1.22] | |
Medium speed | 30 s | 19.64 ± 4.4 | 0.25 [−0.19, 0.69] | 14.08 ± 3.04 * | 0.58 [0.14, 1.02] |
4 min | 22.32 ± 4.46 | 0.32 [−0.12, 0.76] | 17.4 ± 3.28 *,# | 0.50 [0.06, 0.94] | |
8 min | 22.19 ± 4.91 | 0.29 [−0.15, 0.73] | 17.63 ± 4.79 *,# | 0.59 [0.15, 1.03] | |
12 min | 21.89 ± 5.61 | 0.23 [−0.21, 0.67] | 17.11 ± 3.33 *,# | 0.49 [0.05, 0.93] | |
Slow speed | 30 s | 19.14 ± 5.64 | 0.36 [−0.08, 0.80] | 14.84 ± 2.27 | 0.33 [−0.11, 0.77] |
4 min | 20.13 ± 3.79 | 0.07 [−0.37, 0.51] | 15.53 ± 3.04 | 0.26 [−0.18, 0.70] | |
8 min | 20.85 ± 4.22 | 0.01 [−0.43, 0.45] | 15.58 ± 3.31 | 0.13 [−0.31, 0.57] | |
12 min | 21.06 ± 4.37 | 0.05 [−0.39, 0.49] | 15.28 ± 3.18 | 0.23 [−0.21, 0.67] |
Intensity | Time | EP (Nm/s/kg) | d vs. Baseline 95% CI | CP (Nm/s/kg) | d vs. Baseline 95% CI | EM (Nm/s/kg) | d vs. Baseline 95% CI |
---|---|---|---|---|---|---|---|
Baseline | −27.47 ± 7.16 | - | 14.27 ± 2.86 | - | 2.7 ± 0.44 | - | |
Fast speed | 30 s | 4.94 ± 5.9 | 0.37 [−0.07, 0.81] | 13.28 ± 2.7 | 0.36 [−0.08, 0.80] | 2.6 ± 0.5 *,# | 0.24 [−0.20, 0.68] |
4 min | −31.37 ± 7.11 *,# | 0.55 [0.11, 0.99] | 17.29 ± 2.55 *,# | 1.18 [0.74, 1.62] | 2.92 ± 0.45 *,# | 0.52 [0.08, 0.96] | |
8 min | −31.61 ± 6.48 *,# | 0.61 [0.17, 1.05] | 17.6 ± 2.17 *,# | 1.20 [0.76, 1.64] | 2.9 ± 0.46 *,# | 0.46 [0.02, 0.90] | |
12 min | −31.5 ± 7.19 *,# | 0.58 [0.14, 1.02] | 18 ± 2.83 *,# | 1.15 [0.71, 1.59] | 2.86 ± 0.42 *,# | 0.36 [−0.08, 0.80] | |
Medium speed | 30 s | −24.89 ± 6.88 * | 0.36 [−0.08, 0.80] | 12.64 ± 2.57 | 0.57 [0.13, 1.01] | 2.55 ± 0.54 * | 0.28 [−0.16, 0.72] |
4 min | −33.65 ± 7.25 *,# | 0.86 [0.42, 1.30] | 18.13 ± 2.53 *,# | 1.31 [0.87, 1.75] | 3.03 ± 0.43 *,# | 0.76 [0.32, 1.20] | |
8 min | −33.47 ± 7.01 *,# | 0.84 [0.40, 1.28] | 18 ± 3.33 *,# | 1.20 [0.76, 1.64] | 3.09 ± 0.43 *,# | 0.91 [0.47, 1.35] | |
12 min | −33.68 ± 7.47 *,# | 0.87 [0.43, 1.31] | 18.6 ± 2.97 *,# | 1.34 [0.90, 1.78] | 3.05 ± 0.4 *,# | 0.79 [0.35, 1.23] | |
Slow speed | 30 s | −25.82 ± 6.37 | 0.23 [−0.21, 0.67] | 13.7 ± 2.13 | 0.45 [0.01, 0.89] | 2.71 ± 0.39 | 0.02 [−0.42, 0.46] |
4 min | −28.19 ± 6.64 | 0.10 [−0.34, 0.54] | 14.65 ± 2.01 | 0.13 [−0.31, 0.57] | 2.76 ± 0.41 | 0.14 [−0.30, 0.58] | |
8 min | −28.51 ± 7.2 | 0.15 [−0.29, 0.59] | 14.96 ± 2.5 | 0.24 [−0.20, 0.68] | 2.68 ± 0.41 | 0.05 [−0.39, 0.49] | |
12 min | −28.39 ± 7.76 | 0.13 [−0.31, 0.57] | 14.91 ± 2.73 | 0.23 [−0.21, 0.67] | 2.67 ± 0.39 | 0.07 [−0.37, 0.51] |
Intensity | Time | RSI (m/s) | d vs. Baseline | APO (W/kg) | d vs. Baseline | VJH (m) | d vs. Baseline |
---|---|---|---|---|---|---|---|
Baseline | 1.02 ± 0.31 | - | 34.48 ± 4.64 | - | 0.46 ± 0.03 | - | |
Fast speed | 30 s | 0.92 ± 0.25 | 0.35 [−0.09, 0.79] | 31.93 ± 4.81 * | 0.56 [0.12, 1.00] | 0.41 ± 0.04 * | 1.38 [0.94, 1.82] |
4 min | 1.18 ± 0.32 *,# | 0.53 [0.09, 0.97] | 37.65 ± 4.46 *,# | 0.69 [0.25, 1.13] | 0.54 ± 0.04 *,# | 2.41 [1.97, 2.85] | |
8 min | 1.17 ± 0.3 *,# | 0.49 [0.05, 0.93] | 37.57 ± 4.37 *,# | 0.67 [0.23, 1.11] | 0.54 ± 0.03 *,# | 2.78 [2.34, 3.22] | |
12 min | 1.17 ± 0.31 *,# | 0.49 [0.05, 0.93] | 37.44 ± 4.46 *,# | 0.65 [0.21, 1.09] | 0.54 ± 0.03 *,# | 2.73 [2.29, 3.17] | |
Medium speed | 30 s | 0.9 ± 0.28 * | 0.42 [−0.02, 0.86] | 32.05 ± 4.28 * | 0.52 [0.08, 0.96] | 0.41 ± 0.03 * | 1.53 [1.09, 1.97] |
4 min | 1.1 ± 0.34 # | 0.25 [−0.19, 0.69] | 36.2 ± 4.18 *,# | 0.37 [−0.07, 0.81] | 0.51 ± 0.04 *,# | 1.32 [0.88, 1.76] | |
8 min | 1.1 ± 0.32 # | 0.25 [−0.19, 0.69] | 36.27 ± 4.22 *,# | 0.38 [−0.06, 0.82] | 0.50 ± 0.03 *,# | 1.21 [0.77, 1.65] | |
12 min | 1.09 ± 0.34 # | 0.23 [−0.21, 0.67] | 36.06 ± 4.49 *,# | 0.35 [−0.09, 0.79] | 0.50 ± 0.04 *,# | 1.11 [0.67, 1.55] | |
Slow speed | 30 s | 0.86 ± 0.28 * | 0.52 [0.08, 0.96] | 32.38 ± 4.56 * | 0.45 [0.01, 0.89] | 0.39 ± 0.04 * | 1.89 [1.45, 2.33] |
4 min | 1.0 ± 0.29 # | 0.07 [−0.37, 0.50] | 34.33 ± 4.26 # | 0.09 [−0.35, 0.53] | 0.45 ± 0.03 # | 0.01 [−0.43, 0.45] | |
8 min | 1.0 ± 0.33 # | 0.06 [−0.38, 0.50] | 34.21 ± 4.4 # | 0.07 [−0.37, 0.51] | 0.45 ± 0.04 # | 0.01 [−0.43, 0.45] | |
12 min | 1.01 ± 0.45 | 0.04 [−0.40, 0.48] | 34.18 ± 4.52 # | 0.06 [−0.38, 0.50] | 0.45 ± 0.03 # | 0.01 [−0.43, 0.45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhai, H.; Wei, H. Acute Effects of Different Intensities of Flywheel Half Squat Based on Velocity on Vertical Jump Performance in High-Level Athletes. Appl. Sci. 2025, 15, 4388. https://doi.org/10.3390/app15084388
Wang X, Zhai H, Wei H. Acute Effects of Different Intensities of Flywheel Half Squat Based on Velocity on Vertical Jump Performance in High-Level Athletes. Applied Sciences. 2025; 15(8):4388. https://doi.org/10.3390/app15084388
Chicago/Turabian StyleWang, Xixuan, Haiting Zhai, and Hongwen Wei. 2025. "Acute Effects of Different Intensities of Flywheel Half Squat Based on Velocity on Vertical Jump Performance in High-Level Athletes" Applied Sciences 15, no. 8: 4388. https://doi.org/10.3390/app15084388
APA StyleWang, X., Zhai, H., & Wei, H. (2025). Acute Effects of Different Intensities of Flywheel Half Squat Based on Velocity on Vertical Jump Performance in High-Level Athletes. Applied Sciences, 15(8), 4388. https://doi.org/10.3390/app15084388