Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China
Abstract
1. Introduction
2. Materials and Methods
3. Geochemical Classification Method on Shale
4. Test on Sedimentary Rocks
5. Application
5.1. Application on Shale from a Drill Well Profile
5.2. Application on Stream Sediments and Soils
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, O.; Roger, M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bull. 2012, 96, 1–22. [Google Scholar]
- James, J.; Bo, H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas. AAPG Bull. 2007, 91, 437–443. [Google Scholar]
- Potter, P.; Maynard, J.; Pryor, W. Sedimentology of Shale, Study Guide and Reference Source; Springer: New York, NY, USA, 1980; pp. 1–306. [Google Scholar]
- Wang, G.; Timothy, R. Organic-rich marcellus shale lithofacies modeling and distribution pattern analysis in the appalachian basin. AAPG Bull. 2013, 97, 2173–2205. [Google Scholar] [CrossRef]
- Loucks, R.; Ruppel, S. Mississippian Barnett Shale, Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Dong, C.; Ma, C.; Lin, C.; Sun, X.; Yuan, M. A method of classification of shale set. J. China Univ. Petrol. 2015, 39, 1–7. [Google Scholar]
- Tang, X.; Jiang, Z.; Huang, H.; Jiang, S.; Yang, L.; Xiong, F.; Chen, L.; Feng, J. Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan basin, China. J. Nat. Gas Sci. Eng. 2015, 28, 338–346. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Ma, S.; Li, S.; Xue, T.; Li, Q. The Classification and Evaluation of an Interlayer Shale Oil Reservoir Based on the Fractal Characteristics of Pore Systems, A Case Study in the HSN Area, China. Fractal Fract. 2024, 8, 167. [Google Scholar] [CrossRef]
- Qin, Z.; Cao, Y.; Feng, C. Shale lithology identification based on improved random forest algorithm: A case of Lucaogou formation in Junggar basin. Xinjiang Petrol. Geol. 2024, 45, 595–603. [Google Scholar]
- Wu, Z.; Zhang, X.; Zhang, C.; Wang, H. Lithology identification based on LSTM recurrent neural network. Lithol. Reserv. 2021, 33, 120–128. [Google Scholar]
- Liu, Y.; Liu, S.; Ma, Q.; Yao, Z.; She, J. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithol. Reserv. 2019, 31, 101–111. [Google Scholar]
- An, P.; Cao, D. Research and application of logging lithology identification based on deep learning. Prog. Geophys. 2018, 33, 1029–1034. [Google Scholar]
- Deng, S.; Zhang, F.; Chen, Q.; Li, Y.; Wei, Z.; Hong, Y. Identification of shale thin interbeds based on hybrid machine learning algorithm. Acta Petrol. Sin. 2023, 44, 1097–1104. [Google Scholar]
- Wang, G.; Ju, Y.; Huang, C.; Long, S.; Peng, Y. Longmaxi-Wufeng Shale lithofacies identification and 3-D modeling in the northern Fuling Gas Field, Sichuan Basin. J. Nat. Gas Sci. Eng. 2017, 47, 59–72. [Google Scholar] [CrossRef]
- Herron, M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res. 1988, 5, 820–829. [Google Scholar]
- Zou, S.; Wu, C.; Xu, D.; Shan, Q.; Zhang, X.; Hollings, P.; Hou, M. Provenance and depositional setting of Lower Silurian siliciclastic rocks on Hainan Island, South China, Implications for a passive margin environment of South China in Gondwana. J. Asian Earth Sci. 2016, 123, 243–262. [Google Scholar] [CrossRef]
- Farquhar, S.; Pearce, J.; Dawson, G.; Golab, A.; Sommacal, S.; Kirste, D.; Biddle, D.; Golding, S. A fresh approach to investigating CO2 storage, Experimental CO2-water-rock interactions in a low-salinity reservoir system. Chem. Geol. 2014, 399, 98–122. [Google Scholar] [CrossRef]
- Diskin, S.; Evans, J.; Fowler, M.; Guion, P. Recognising different sediment provenances within a passive margin setting, towards characterising a sediment source to the west of the British late carboniferous sedimentary basins. Chem. Geol. 2011, 283, 143–160. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Xu, S.; Li, W. Classification of geological materials on geochemical lithogenes, Illustration on a case study in Gejiu area of Yunnan Province, China. Appl. Geochem. 2022, 146, 105460. [Google Scholar] [CrossRef]
- Gamero-Diaz, H.; Miller, C.; Lewis, R. sCore: A Mineralogy Based Classification Scheme for Organic Mudstones. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Zhu, H.; Kong, X.; Long, H.; Huai, Y. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 121. [Google Scholar]
- Bai, B.; Hao, J.; Fu, L.; Liu, Y.; Wang, J.; Wang, L.; Taylor, K.; Ma, L. Microfacies and diagenetic alteration in a semi-deep to deep lacustrine shale, The Yanchang Formation in the Ordos Basin, China. Petrol. Sci. 2024, 21, 1524–1538. [Google Scholar] [CrossRef]
- Du, W.; Hu, Z.; Liu, G.; Zhu, T.; Nie, H.; Yan, C.; Wang, G. Lithofacies of Upper Ordovician Wufeng Formation in Sichuan Basin and its periphery. Pet. Geol. Exp. 2020, 42, 398–404. [Google Scholar]
- Xiang, Y.; Mu, X.; Ren, T.; Liu, R.; Wu, X. China regional geochemical exploration database. Geol. China 2018, 45, 41–57. [Google Scholar]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007; pp. 1–148. [Google Scholar]
- Gong, Q.; Deng, J.; Wang, C.; Wang, Z.; Zhou, L. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition, A case study on Linglong biotite granite in Jiaodong peninsula, China. J. Geochem. Explor. 2013, 128, 14–24. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Jia, Y.; Tong, Y.; Liu, N. Empirical equations to describe trace element behaviors due to rock weathering in China. J. Geochem. Explor. 2015, 152, 110–117. [Google Scholar] [CrossRef]
- Jia, G.; Gu, W.; Gong, Q.; Xu, S.; Liu, Y.; Lv, Z. A 19-level fixed-value method to classify the Mo concentrations in Jianshui area of Yunnan province, China. Appl. Geochem. 2025, 180, 106289. [Google Scholar] [CrossRef]
Steps | Conditions | Type Number | Components |
---|---|---|---|
1 | SiO2 ≥ 79 | 1 | Siliceous |
2 | 67.5 ≤ SiO2 < 79 | 2 | Felsic |
3 | WIG < 120 (with SiO2 < 67.59) | 3 | Silicate |
4 | CaO < 22 (with WIG ≥ 120 and SiO2 < 67.59) | 4 | Calcasilicate |
5 | CaO/MgO < 4.2 (with CaO ≥ 22) | 5 | Dolomitic |
6 | CaO/MgO ≥ 4.2 (with CaO ≥ 22) | 6 | Calcareous |
ID | Rocks | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG | Classified Types |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mudstone (shale) (average) | 60.63 | 16.35 | 5.91 | 2.66 | 1.86 | 3.45 | 0.80 | 0.76 | 0.12 | 1.43 | 45.46 | 3 |
2 | Common mudstone (shale) | 61.98 | 16.24 | 6.17 | 1.81 | 1.96 | 3.61 | 0.88 | 0.77 | 0.13 | 0.92 | 39.42 | 3 |
3 | Silty mudstone (shale) | 65.57 | 14.24 | 5.44 | 2.01 | 1.73 | 3.27 | 0.96 | 0.71 | 0.12 | 1.16 | 45.63 | 3 |
4 | Calcareous mudstone (shale) | 53.60 | 12.77 | 4.79 | 8.88 | 2.72 | 3.72 | 0.64 | 0.66 | 0.13 | 3.26 | 125.48 | 4 |
5 | Aluminiferous mudstone (shale) | 54.82 | 24.90 | 6.06 | 0.89 | 0.79 | 2.76 | 0.35 | 0.94 | 0.10 | 1.13 | 16.50 | 3 |
6 | Sandstone (average) | 72.63 | 10.91 | 3.67 | 2.52 | 1.26 | 2.40 | 1.41 | 0.49 | 0.09 | 2.00 | 66.84 | 2 |
7 | Quartz sandstone | 92.76 | 3.36 | 0.97 | 0.21 | 0.21 | 0.83 | 0.11 | 0.14 | 0.03 | 1.00 | 33.14 | 1 |
8 | Feldspar quartz sandstone | 81.40 | 8.26 | 2.73 | 0.85 | 0.64 | 1.92 | 0.60 | 0.40 | 0.07 | 1.33 | 42.38 | 1 |
9 | Greywacke | 67.72 | 12.51 | 4.23 | 3.35 | 1.57 | 2.69 | 1.83 | 0.54 | 0.11 | 2.13 | 73.87 | 2 |
10 | Arkoses | 68.53 | 12.65 | 4.00 | 2.78 | 1.55 | 2.70 | 2.44 | 0.52 | 0.11 | 1.79 | 73.86 | 2 |
11 | Silty sandstone | 69.08 | 13.00 | 4.76 | 1.93 | 1.51 | 2.74 | 1.32 | 0.62 | 0.10 | 1.28 | 49.93 | 2 |
12 | Blasto-sandstone | 70.00 | 12.85 | 4.42 | 1.72 | 1.89 | 2.93 | 2.20 | 0.55 | 0.13 | 0.91 | 58.72 | 2 |
13 | Calcareous sandstone | 60.72 | 9.44 | 2.94 | 10.10 | 1.79 | 2.24 | 1.25 | 0.43 | 0.10 | 5.64 | 190.62 | 4 |
14 | Tuffaceous sandstone | 68.18 | 14.50 | 3.93 | 1.88 | 1.42 | 3.24 | 2.87 | 0.50 | 0.11 | 1.32 | 64.50 | 2 |
15 | Carbonate rock (without argillaceous content) | 6.49 | 1.14 | 0.71 | 42.84 | 6.53 | 0.34 | 0.10 | 0.05 | 0.04 | 6.56 | 4714.75 | 6 |
16 | Carbonate rock (with argillaceous content) | 10.07 | 1.77 | 0.98 | 40.42 | 6.25 | 0.54 | 0.14 | 0.08 | 0.05 | 6.47 | 2964.03 | 6 |
17 | Limestone | 3.18 | 0.66 | 0.43 | 50.20 | 2.33 | 0.19 | 0.07 | 0.03 | 0.02 | 21.55 | 9398.58 | 6 |
18 | Argillaceous limestone | 11.39 | 2.24 | 1.19 | 43.00 | 2.94 | 0.61 | 0.18 | 0.11 | 0.06 | 14.63 | 2515.62 | 6 |
19 | Dolomite | 4.45 | 0.67 | 0.66 | 31.70 | 17.35 | 0.24 | 0.07 | 0.04 | 0.02 | 1.83 | 5100.95 | 5 |
20 | Argillaceous dolomite | 12.25 | 1.35 | 0.86 | 28.60 | 15.55 | 0.49 | 0.13 | 0.07 | 0.05 | 1.84 | 2655.51 | 5 |
21 | Marl | 25.14 | 4.81 | 2.22 | 33.65 | 1.88 | 1.19 | 0.39 | 0.24 | 0.09 | 17.90 | 962.81 | 6 |
22 | Dololutite | 27.00 | 3.90 | 2.00 | 22.10 | 11.80 | 1.84 | 0.07 | 0.25 | 0.07 | 1.87 | 767.37 | 5 |
23 | Siliceous rock(average) | 87.34 | 4.11 | 1.61 | 0.89 | 0.68 | 0.98 | 0.25 | 0.19 | 0.06 | 1.31 | 54.63 | 1 |
24 | Common Siliceous rock | 88.74 | 4.52 | 1.88 | 0.29 | 0.56 | 0.83 | 0.28 | 0.20 | 0.07 | 0.52 | 28.60 | 1 |
25 | Carbonaceous siliceous rock | 82.84 | 4.88 | 1.48 | 0.89 | 0.88 | 1.82 | 0.18 | 0.26 | 0.05 | 1.01 | 61.12 | 1 |
26 | Chert | 89.32 | 0.51 | 0.26 | 3.93 | 0.88 | 0.05 | 0.22 | 0.01 | 0.08 | 4.47 | 1062.52 | 1 |
Parameters | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 9.38 | 2.44 | 0.66 | 0.25 | 0.68 | 0.49 | 0.31 | 0.08 | 0.05 | 0.10 | 19.80 |
Lower quartile value | 53.52 | 13.11 | 3.58 | 3.80 | 2.33 | 2.59 | 0.56 | 0.54 | 0.08 | 1.39 | 59.56 |
Median value | 56.91 | 14.00 | 5.37 | 6.14 | 3.02 | 3.53 | 0.66 | 0.68 | 0.10 | 1.91 | 83.82 |
Upper quartile value | 60.25 | 15.38 | 5.73 | 9.85 | 3.37 | 3.70 | 0.81 | 0.72 | 0.14 | 3.25 | 129.65 |
Maximum value | 82.57 | 26.86 | 42.72 | 47.15 | 8.11 | 7.43 | 3.04 | 2.40 | 0.35 | 68.75 | 2587.22 |
Mean value | 54.36 | 12.91 | 5.15 | 10.11 | 2.85 | 3.11 | 0.87 | 0.66 | 0.13 | 6.08 | 257.12 |
Standard deviation value | 15.12 | 4.51 | 3.64 | 11.18 | 1.10 | 1.20 | 0.61 | 0.35 | 0.07 | 13.16 | 496.38 |
Parameters | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 26.12 | 1.20 | 0.39 | 0.01 | 0.04 | 0.21 | 0.05 | 0.06 | 0.01 | 0.02 | 2.87 |
Lower quartile value | 61.57 | 10.40 | 3.55 | 0.56 | 0.94 | 1.73 | 0.63 | 0.57 | 0.16 | 0.49 | 31.15 |
Median value | 65.87 | 12.82 | 4.59 | 1.02 | 1.51 | 2.21 | 1.00 | 0.67 | 0.22 | 0.74 | 40.62 |
Upper quartile value | 71.73 | 14.13 | 5.41 | 1.98 | 2.04 | 2.60 | 1.45 | 0.75 | 0.29 | 1.24 | 52.09 |
Maximum value | 94.70 | 22.03 | 18.53 | 23.97 | 12.95 | 6.30 | 48.00 | 4.59 | 2.14 | 20.44 | 905.43 |
Mean value | 67.13 | 12.02 | 4.51 | 1.64 | 1.54 | 2.17 | 1.10 | 0.70 | 0.23 | 0.97 | 43.98 |
Standard deviation value | 8.34 | 2.88 | 1.66 | 1.75 | 0.82 | 0.60 | 0.82 | 0.34 | 0.11 | 0.79 | 26.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Gu, W.; Gong, Q.; Zhu, X.; Jia, G.; Yan, T. Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Appl. Sci. 2025, 15, 4272. https://doi.org/10.3390/app15084272
Wei J, Gu W, Gong Q, Zhu X, Jia G, Yan T. Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Applied Sciences. 2025; 15(8):4272. https://doi.org/10.3390/app15084272
Chicago/Turabian StyleWei, Jinghan, Weixuan Gu, Qingjie Gong, Xianfu Zhu, Guoling Jia, and Taotao Yan. 2025. "Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China" Applied Sciences 15, no. 8: 4272. https://doi.org/10.3390/app15084272
APA StyleWei, J., Gu, W., Gong, Q., Zhu, X., Jia, G., & Yan, T. (2025). Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Applied Sciences, 15(8), 4272. https://doi.org/10.3390/app15084272