Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China
Abstract
:1. Introduction
2. Materials and Methods
3. Geochemical Classification Method on Shale
4. Test on Sedimentary Rocks
5. Application
5.1. Application on Shale from a Drill Well Profile
5.2. Application on Stream Sediments and Soils
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, O.; Roger, M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bull. 2012, 96, 1–22. [Google Scholar]
- James, J.; Bo, H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas. AAPG Bull. 2007, 91, 437–443. [Google Scholar]
- Potter, P.; Maynard, J.; Pryor, W. Sedimentology of Shale, Study Guide and Reference Source; Springer: New York, NY, USA, 1980; pp. 1–306. [Google Scholar]
- Wang, G.; Timothy, R. Organic-rich marcellus shale lithofacies modeling and distribution pattern analysis in the appalachian basin. AAPG Bull. 2013, 97, 2173–2205. [Google Scholar] [CrossRef]
- Loucks, R.; Ruppel, S. Mississippian Barnett Shale, Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Dong, C.; Ma, C.; Lin, C.; Sun, X.; Yuan, M. A method of classification of shale set. J. China Univ. Petrol. 2015, 39, 1–7. [Google Scholar]
- Tang, X.; Jiang, Z.; Huang, H.; Jiang, S.; Yang, L.; Xiong, F.; Chen, L.; Feng, J. Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan basin, China. J. Nat. Gas Sci. Eng. 2015, 28, 338–346. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Ma, S.; Li, S.; Xue, T.; Li, Q. The Classification and Evaluation of an Interlayer Shale Oil Reservoir Based on the Fractal Characteristics of Pore Systems, A Case Study in the HSN Area, China. Fractal Fract. 2024, 8, 167. [Google Scholar] [CrossRef]
- Qin, Z.; Cao, Y.; Feng, C. Shale lithology identification based on improved random forest algorithm: A case of Lucaogou formation in Junggar basin. Xinjiang Petrol. Geol. 2024, 45, 595–603. [Google Scholar]
- Wu, Z.; Zhang, X.; Zhang, C.; Wang, H. Lithology identification based on LSTM recurrent neural network. Lithol. Reserv. 2021, 33, 120–128. [Google Scholar]
- Liu, Y.; Liu, S.; Ma, Q.; Yao, Z.; She, J. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithol. Reserv. 2019, 31, 101–111. [Google Scholar]
- An, P.; Cao, D. Research and application of logging lithology identification based on deep learning. Prog. Geophys. 2018, 33, 1029–1034. [Google Scholar]
- Deng, S.; Zhang, F.; Chen, Q.; Li, Y.; Wei, Z.; Hong, Y. Identification of shale thin interbeds based on hybrid machine learning algorithm. Acta Petrol. Sin. 2023, 44, 1097–1104. [Google Scholar]
- Wang, G.; Ju, Y.; Huang, C.; Long, S.; Peng, Y. Longmaxi-Wufeng Shale lithofacies identification and 3-D modeling in the northern Fuling Gas Field, Sichuan Basin. J. Nat. Gas Sci. Eng. 2017, 47, 59–72. [Google Scholar] [CrossRef]
- Herron, M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res. 1988, 5, 820–829. [Google Scholar]
- Zou, S.; Wu, C.; Xu, D.; Shan, Q.; Zhang, X.; Hollings, P.; Hou, M. Provenance and depositional setting of Lower Silurian siliciclastic rocks on Hainan Island, South China, Implications for a passive margin environment of South China in Gondwana. J. Asian Earth Sci. 2016, 123, 243–262. [Google Scholar] [CrossRef]
- Farquhar, S.; Pearce, J.; Dawson, G.; Golab, A.; Sommacal, S.; Kirste, D.; Biddle, D.; Golding, S. A fresh approach to investigating CO2 storage, Experimental CO2-water-rock interactions in a low-salinity reservoir system. Chem. Geol. 2014, 399, 98–122. [Google Scholar] [CrossRef]
- Diskin, S.; Evans, J.; Fowler, M.; Guion, P. Recognising different sediment provenances within a passive margin setting, towards characterising a sediment source to the west of the British late carboniferous sedimentary basins. Chem. Geol. 2011, 283, 143–160. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Xu, S.; Li, W. Classification of geological materials on geochemical lithogenes, Illustration on a case study in Gejiu area of Yunnan Province, China. Appl. Geochem. 2022, 146, 105460. [Google Scholar] [CrossRef]
- Gamero-Diaz, H.; Miller, C.; Lewis, R. sCore: A Mineralogy Based Classification Scheme for Organic Mudstones. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Zhu, H.; Kong, X.; Long, H.; Huai, Y. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 121. [Google Scholar]
- Bai, B.; Hao, J.; Fu, L.; Liu, Y.; Wang, J.; Wang, L.; Taylor, K.; Ma, L. Microfacies and diagenetic alteration in a semi-deep to deep lacustrine shale, The Yanchang Formation in the Ordos Basin, China. Petrol. Sci. 2024, 21, 1524–1538. [Google Scholar] [CrossRef]
- Du, W.; Hu, Z.; Liu, G.; Zhu, T.; Nie, H.; Yan, C.; Wang, G. Lithofacies of Upper Ordovician Wufeng Formation in Sichuan Basin and its periphery. Pet. Geol. Exp. 2020, 42, 398–404. [Google Scholar]
- Xiang, Y.; Mu, X.; Ren, T.; Liu, R.; Wu, X. China regional geochemical exploration database. Geol. China 2018, 45, 41–57. [Google Scholar]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007; pp. 1–148. [Google Scholar]
- Gong, Q.; Deng, J.; Wang, C.; Wang, Z.; Zhou, L. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition, A case study on Linglong biotite granite in Jiaodong peninsula, China. J. Geochem. Explor. 2013, 128, 14–24. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Jia, Y.; Tong, Y.; Liu, N. Empirical equations to describe trace element behaviors due to rock weathering in China. J. Geochem. Explor. 2015, 152, 110–117. [Google Scholar] [CrossRef]
- Jia, G.; Gu, W.; Gong, Q.; Xu, S.; Liu, Y.; Lv, Z. A 19-level fixed-value method to classify the Mo concentrations in Jianshui area of Yunnan province, China. Appl. Geochem. 2025, 180, 106289. [Google Scholar] [CrossRef]
Steps | Conditions | Type Number | Components |
---|---|---|---|
1 | SiO2 ≥ 79 | 1 | Siliceous |
2 | 67.5 ≤ SiO2 < 79 | 2 | Felsic |
3 | WIG < 120 (with SiO2 < 67.59) | 3 | Silicate |
4 | CaO < 22 (with WIG ≥ 120 and SiO2 < 67.59) | 4 | Calcasilicate |
5 | CaO/MgO < 4.2 (with CaO ≥ 22) | 5 | Dolomitic |
6 | CaO/MgO ≥ 4.2 (with CaO ≥ 22) | 6 | Calcareous |
ID | Rocks | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG | Classified Types |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mudstone (shale) (average) | 60.63 | 16.35 | 5.91 | 2.66 | 1.86 | 3.45 | 0.80 | 0.76 | 0.12 | 1.43 | 45.46 | 3 |
2 | Common mudstone (shale) | 61.98 | 16.24 | 6.17 | 1.81 | 1.96 | 3.61 | 0.88 | 0.77 | 0.13 | 0.92 | 39.42 | 3 |
3 | Silty mudstone (shale) | 65.57 | 14.24 | 5.44 | 2.01 | 1.73 | 3.27 | 0.96 | 0.71 | 0.12 | 1.16 | 45.63 | 3 |
4 | Calcareous mudstone (shale) | 53.60 | 12.77 | 4.79 | 8.88 | 2.72 | 3.72 | 0.64 | 0.66 | 0.13 | 3.26 | 125.48 | 4 |
5 | Aluminiferous mudstone (shale) | 54.82 | 24.90 | 6.06 | 0.89 | 0.79 | 2.76 | 0.35 | 0.94 | 0.10 | 1.13 | 16.50 | 3 |
6 | Sandstone (average) | 72.63 | 10.91 | 3.67 | 2.52 | 1.26 | 2.40 | 1.41 | 0.49 | 0.09 | 2.00 | 66.84 | 2 |
7 | Quartz sandstone | 92.76 | 3.36 | 0.97 | 0.21 | 0.21 | 0.83 | 0.11 | 0.14 | 0.03 | 1.00 | 33.14 | 1 |
8 | Feldspar quartz sandstone | 81.40 | 8.26 | 2.73 | 0.85 | 0.64 | 1.92 | 0.60 | 0.40 | 0.07 | 1.33 | 42.38 | 1 |
9 | Greywacke | 67.72 | 12.51 | 4.23 | 3.35 | 1.57 | 2.69 | 1.83 | 0.54 | 0.11 | 2.13 | 73.87 | 2 |
10 | Arkoses | 68.53 | 12.65 | 4.00 | 2.78 | 1.55 | 2.70 | 2.44 | 0.52 | 0.11 | 1.79 | 73.86 | 2 |
11 | Silty sandstone | 69.08 | 13.00 | 4.76 | 1.93 | 1.51 | 2.74 | 1.32 | 0.62 | 0.10 | 1.28 | 49.93 | 2 |
12 | Blasto-sandstone | 70.00 | 12.85 | 4.42 | 1.72 | 1.89 | 2.93 | 2.20 | 0.55 | 0.13 | 0.91 | 58.72 | 2 |
13 | Calcareous sandstone | 60.72 | 9.44 | 2.94 | 10.10 | 1.79 | 2.24 | 1.25 | 0.43 | 0.10 | 5.64 | 190.62 | 4 |
14 | Tuffaceous sandstone | 68.18 | 14.50 | 3.93 | 1.88 | 1.42 | 3.24 | 2.87 | 0.50 | 0.11 | 1.32 | 64.50 | 2 |
15 | Carbonate rock (without argillaceous content) | 6.49 | 1.14 | 0.71 | 42.84 | 6.53 | 0.34 | 0.10 | 0.05 | 0.04 | 6.56 | 4714.75 | 6 |
16 | Carbonate rock (with argillaceous content) | 10.07 | 1.77 | 0.98 | 40.42 | 6.25 | 0.54 | 0.14 | 0.08 | 0.05 | 6.47 | 2964.03 | 6 |
17 | Limestone | 3.18 | 0.66 | 0.43 | 50.20 | 2.33 | 0.19 | 0.07 | 0.03 | 0.02 | 21.55 | 9398.58 | 6 |
18 | Argillaceous limestone | 11.39 | 2.24 | 1.19 | 43.00 | 2.94 | 0.61 | 0.18 | 0.11 | 0.06 | 14.63 | 2515.62 | 6 |
19 | Dolomite | 4.45 | 0.67 | 0.66 | 31.70 | 17.35 | 0.24 | 0.07 | 0.04 | 0.02 | 1.83 | 5100.95 | 5 |
20 | Argillaceous dolomite | 12.25 | 1.35 | 0.86 | 28.60 | 15.55 | 0.49 | 0.13 | 0.07 | 0.05 | 1.84 | 2655.51 | 5 |
21 | Marl | 25.14 | 4.81 | 2.22 | 33.65 | 1.88 | 1.19 | 0.39 | 0.24 | 0.09 | 17.90 | 962.81 | 6 |
22 | Dololutite | 27.00 | 3.90 | 2.00 | 22.10 | 11.80 | 1.84 | 0.07 | 0.25 | 0.07 | 1.87 | 767.37 | 5 |
23 | Siliceous rock(average) | 87.34 | 4.11 | 1.61 | 0.89 | 0.68 | 0.98 | 0.25 | 0.19 | 0.06 | 1.31 | 54.63 | 1 |
24 | Common Siliceous rock | 88.74 | 4.52 | 1.88 | 0.29 | 0.56 | 0.83 | 0.28 | 0.20 | 0.07 | 0.52 | 28.60 | 1 |
25 | Carbonaceous siliceous rock | 82.84 | 4.88 | 1.48 | 0.89 | 0.88 | 1.82 | 0.18 | 0.26 | 0.05 | 1.01 | 61.12 | 1 |
26 | Chert | 89.32 | 0.51 | 0.26 | 3.93 | 0.88 | 0.05 | 0.22 | 0.01 | 0.08 | 4.47 | 1062.52 | 1 |
Parameters | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 9.38 | 2.44 | 0.66 | 0.25 | 0.68 | 0.49 | 0.31 | 0.08 | 0.05 | 0.10 | 19.80 |
Lower quartile value | 53.52 | 13.11 | 3.58 | 3.80 | 2.33 | 2.59 | 0.56 | 0.54 | 0.08 | 1.39 | 59.56 |
Median value | 56.91 | 14.00 | 5.37 | 6.14 | 3.02 | 3.53 | 0.66 | 0.68 | 0.10 | 1.91 | 83.82 |
Upper quartile value | 60.25 | 15.38 | 5.73 | 9.85 | 3.37 | 3.70 | 0.81 | 0.72 | 0.14 | 3.25 | 129.65 |
Maximum value | 82.57 | 26.86 | 42.72 | 47.15 | 8.11 | 7.43 | 3.04 | 2.40 | 0.35 | 68.75 | 2587.22 |
Mean value | 54.36 | 12.91 | 5.15 | 10.11 | 2.85 | 3.11 | 0.87 | 0.66 | 0.13 | 6.08 | 257.12 |
Standard deviation value | 15.12 | 4.51 | 3.64 | 11.18 | 1.10 | 1.20 | 0.61 | 0.35 | 0.07 | 13.16 | 496.38 |
Parameters | SiO2 | Al2O3 | TFe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | CaO/MgO | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 26.12 | 1.20 | 0.39 | 0.01 | 0.04 | 0.21 | 0.05 | 0.06 | 0.01 | 0.02 | 2.87 |
Lower quartile value | 61.57 | 10.40 | 3.55 | 0.56 | 0.94 | 1.73 | 0.63 | 0.57 | 0.16 | 0.49 | 31.15 |
Median value | 65.87 | 12.82 | 4.59 | 1.02 | 1.51 | 2.21 | 1.00 | 0.67 | 0.22 | 0.74 | 40.62 |
Upper quartile value | 71.73 | 14.13 | 5.41 | 1.98 | 2.04 | 2.60 | 1.45 | 0.75 | 0.29 | 1.24 | 52.09 |
Maximum value | 94.70 | 22.03 | 18.53 | 23.97 | 12.95 | 6.30 | 48.00 | 4.59 | 2.14 | 20.44 | 905.43 |
Mean value | 67.13 | 12.02 | 4.51 | 1.64 | 1.54 | 2.17 | 1.10 | 0.70 | 0.23 | 0.97 | 43.98 |
Standard deviation value | 8.34 | 2.88 | 1.66 | 1.75 | 0.82 | 0.60 | 0.82 | 0.34 | 0.11 | 0.79 | 26.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Gu, W.; Gong, Q.; Zhu, X.; Jia, G.; Yan, T. Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Appl. Sci. 2025, 15, 4272. https://doi.org/10.3390/app15084272
Wei J, Gu W, Gong Q, Zhu X, Jia G, Yan T. Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Applied Sciences. 2025; 15(8):4272. https://doi.org/10.3390/app15084272
Chicago/Turabian StyleWei, Jinghan, Weixuan Gu, Qingjie Gong, Xianfu Zhu, Guoling Jia, and Taotao Yan. 2025. "Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China" Applied Sciences 15, no. 8: 4272. https://doi.org/10.3390/app15084272
APA StyleWei, J., Gu, W., Gong, Q., Zhu, X., Jia, G., & Yan, T. (2025). Geochemical Classification of Shale Based on Compositional Data: An Illustration in Southern Sichuan Area, China. Applied Sciences, 15(8), 4272. https://doi.org/10.3390/app15084272