Facilitation Effects of Acidic Chlorinated Salts on Reservoir Unblocking During In Situ Conversion of Huadian Oil Shale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.3. Analytical Methods
2.3.1. OS and Various Mixed Samples
2.3.2. Shale Oil
2.3.3. Shale Gas
3. Results and Discussion
3.1. Effects on the Pyrolysis Behavior of OS
3.1.1. XRD Analysis
3.1.2. TG/DTG Analysis
3.2. Effects on the Pore Evolution of Residues
3.2.1. Pore Structure
3.2.2. Specific Surface Area and Pore Volume
3.3. Effect on Product Yield and Composition
3.3.1. Effect on Shale Gas Composition
3.3.2. Effect on Shale Oil Yield
3.3.3. Effect on Shale Oil Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raul, A. Fossil Fuels, Alternative Energy and Economic Growth. Econ. Model. 2018, 75, 196–220. [Google Scholar]
- Dyni, J. Geology and Resources of Some World Oil-Shale Deposits. Oil Shale 2023, 20, 193–252. [Google Scholar] [CrossRef]
- Jaber, T.; Apostolos, K. A Comprehensive Review of Microwave Application on the Oil Shale: Prospects for Shale Oil Production. Fuel 2021, 305, 121519. [Google Scholar]
- Zachariah, S.; Vahur, O.; Oliver, J. The Composition of Kukersite Shale Oil. Oil Shale 2023, 40, 25–43. [Google Scholar]
- He, W.T.; Sun, Y.H.; Shan, X.L. Organic Matter Evolution in Pyrolysis Experiments of Oil Shale Under High Pressure: Guidance for In Situ Conversion of Oil Shale in the Songliao Basin. J. Anal. Appl. Pyrolysis 2021, 155, 105091. [Google Scholar] [CrossRef]
- Hillier, J.L.; Fletcher, T.H.; Solum, M.S.; Pugmire, R.J. Characterization of Macromolecular Structure of Pyrolysis Products from a Colorado Green River Oil Shale. Ind. Eng. Chem. Res. 2013, 52, 15522–15532. [Google Scholar] [CrossRef]
- Amer, M.; Alhesan, J.; Marshall, M.; Fei, Y.; Jackson, W.; Chaffee, A. Energy Efficient Method of Supercritical Extraction of Oil from Oil Shale. Energy Convers. Manag. 2022, 252, 115108. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.; Zhang, Y.X.; Li, W.Q.; Kang, Z.Q.; Zhao, Y.S. Research on the Reaction Mechanism and Modification Distance of Oil Shale During High-Temperature Water Vapor Pyrolysis. Energy 2022, 261, 125213. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Zhao, Y.S.; Kang, Z.Q. Investigating Pilot Test of Oil Shale Pyrolysis and Oil and Gas Upgrading by Water Vapor Injection. J. Pet. Sci. Eng. 2021, 196, 108101. [Google Scholar] [CrossRef]
- Kang, Z.Q.; Zhao, Y.S.; Yang, D. Review of Oil Shale In-Situ Conversion Technology. Appl. Energy 2020, 269, 115121. [Google Scholar] [CrossRef]
- Hubbard, A.B.; Robinson, W.E. A Thermal Decomposition Study of Colorado Oil Shale; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1950. [Google Scholar]
- Braun, R.L.; Rothman, A.U. Oil Shale Pyrolysis: Kinetics and Mechanism of Oil Production. Fuel 1975, 54, 129–131. [Google Scholar] [CrossRef]
- Allred, V.D. Kinetics of Oil Shale Pyrolysis. Chem. Eng. Prog. 1966, 62, 55–60. [Google Scholar]
- He, L.; Ma, Y.; Yue, C.T.; Wu, J.X.; Li, S.Y. Kinetic Modeling of Kukersite Oil Shale Pyrolysis with Thermal Bitumen as an Intermediate. Fuel 2020, 279, 118371. [Google Scholar] [CrossRef]
- Qin, K.Z.; Wu, X.L. Mechanism of Hydrocarbon Formation from Oil Shale Kerogen Viewed by High Magnetic Field Solid State 13C NMR Spectroscopy. Acta Sedimentol. Sin. 1990, 8, 19–27. [Google Scholar]
- Guo, W.; Fan, C.; Deng, S.; Shui, H.; Liu, Z. Secondary Cracking Characteristics of Asphaltenes and Insights into the Reservoir Unblocking During Oil Shale In-Situ Exploitation. Adv. Geo-Energy Res. 2025, 15, 13–29. [Google Scholar] [CrossRef]
- Martins, M.F.; Salvador, S.; Thovert, J.-F.; Debenest, G. Co-Current Combustion of Oil Shale—Part 1: Characterization of the Solid and Gaseous Products. Fuel 2010, 89, 144–151. [Google Scholar] [CrossRef]
- Martins, M.F.; Salvador, S.; Thovert, J.-F.; Debenest, G. Co-Current Combustion of Oil Shale—Part 2: Structure of the Combustion Front. Fuel 2010, 89, 133–143. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Y.; Yang, Q.; Wang, H.; Kang, S.; Guo, W.; Shan, X.; He, W. Product Migration and Regional Reaction Characteristics in the Autothermic Pyrolysis In-Situ Conversion Process of Low-Permeability Huadian Oil Shale Core. Energy 2023, 283, 128525. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Y.H.; Li, Q.; Deng, S.H.; Bai, F.T.; Chen, C.; Zhu, C.F.; Wang, Y.; Liu, Z. Oil Shale In-Situ Conversion Technology Triggered by Topochemical Reaction Method and Pilot Test Project in Songliao Basin. Acta Petrol. Sin. 2024, 45, 1104–1121, 1129. [Google Scholar]
- Abakar, R.; Sun, Y.H.; Han, J.; Guo, M.Y. Catalytic Pyrolysis of Oil Shale in the Presence of Three Kinds of Inorganic Salt. Jilin Univ. J. Earth Sci. 2018, 48, 1043–1049. [Google Scholar]
- Jiang, H.F.; Hong, W.P.; Zhang, Y.; Deng, S.H.; Chen, J.; Yang, C.; Ding, H.S. Behavior, Kinetic and Product Characteristics of the Pyrolysis of Oil Shale Catalyzed by Cobalt-Montmorillonite Catalyst. Fuel 2020, 269, 117468. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Xu, G.J.; Geng, G.W.; Wang, J.J.; Wang, Z.P.; Su, J.Z.; Meng, X.L.; Chen, P.L. Enhanced Production of Thiophenes, Pyrroles, and Olefines via a Catalyst-assisted Pyrolysis of Oil Shale. Thermochim. Acta 2025, 743, 179900. [Google Scholar] [CrossRef]
- Kang, S.J.; Sun, Y.H.; Qiao, M.Y.; Li, S.L.; Deng, S.H.; Guo, W.; Li, J.S.; He, W.T. The Enhancement on Oil Shale Extraction of FeCl3 Catalyst in Subcritical Water. Energy 2022, 238, 121763. [Google Scholar] [CrossRef]
- Song, R.R.; Meng, X.L.; Yu, C.; Bian, J.J.; Su, J.Z. Oil Shale In-Situ Upgrading with Natural Clay-Based Catalysts: Enhancement of Oil Yield and Quality. Fuel 2022, 314, 123076. [Google Scholar] [CrossRef]
- Hu, M.J.; Cheng, Z.Q.; Zhang, M.Y.; Liu, M.Z.; Song, L.H.; Zhang, Y.Q.; Li, J.F. Effect of Calcite, Kaolinite, Gypsum, and Montmorillonite on Huadian Oil Shale Kerogen Pyrolysis. Energy Fuels 2014, 28, 1860–1867. [Google Scholar] [CrossRef]
- Cao, T.T.; Deng, M.; Song, Z.G.; Liu, G.X.; Huang, Y.R.; Hursthouse, A.S. Study on the Effect of Pyrite on the Accumulation of Shale Oil and Gas. Nat. Gas Geosci. 2018, 29, 11. [Google Scholar]
- Yang, Q.C.; Guo, M.Y.; Guo, W. Effects of Associated Minerals on the Co-Current Oxidizing Pyrolysis of Oil Shale in a Low-Temperature Stage. ACS Omega 2021, 6, 23988–23997. [Google Scholar] [CrossRef]
- Guo, H.F.; Lin, J.D.; Yang, Y.D.; Liu, Y.Y. Effect of Minerals on the Self-Heating Retorting of Oil Shale: Self-Heating Effect and Shale-Oil Production. Fuel 2014, 118, 186–193. [Google Scholar] [CrossRef]
- Guo, H.F.; Cheng, Q.X.; Jin, Z.; Wang, D.; Wang, K.K.; Ding, Y.; Zhu, H.; Liu, Y.Y. The Effect of Minerals on the Pyrolysis and the Combustion of Oil Shale. Energy Source Part A 2016, 38, 2963–2970. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.; Hu, Y.; Zhang, J.; Shao, J.; Song, S.; Kang, Z. Influence of In Situ Pyrolysis on the Evolution of Pore Structure of Oil Shale. Energies 2018, 11, 755. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%, ad) | Sd | Ultimate Analysis (wt.%, d) | Sd | ||
---|---|---|---|---|---|
Moisture | 1.12 | 0.22 | C | 31.59 | 0.07 |
Volatile matter | 43.24 | 0.26 | H | 3.99 | 0.03 |
Ash | 54.26 | 0.14 | N | 0.30 | 0.02 |
Fixed carbon | 1.38 | 0.21 | S | 0.79 | 0.01 |
Calorific value (MJ/kg) | 12.02 | 0.08 | O | 9.06 | 0.02 |
Fischer assay analysis (wt.%, ad) | |||||
Shale oil | 18.31 | 0.18 | |||
Water | 3.79 | 0.09 | |||
Residue | 67.39 | 0.18 | |||
Gases + loss | 10.51 | 0.15 |
Samples | Temperature/°C | Time of Constant Temperature/min | Primary Components/mole% | |||||
---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C2H4 | C3H8 | C3H6 | CO2 | |||
OS | 400 | 0 | 0.56 | 0.17 | 0.12 | 0.07 | 0.12 | 9.50 |
30 | 5.18 | 2.60 | 0.84 | 1.12 | 1.04 | 3.58 | ||
60 | 2.10 | 0.89 | 0.28 | 0.37 | 0.36 | 2.58 | ||
520 | 0 | 10.32 | 3.00 | 2.59 | 0.62 | 1.85 | 9.51 | |
30 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
DMOS + AlCl3·6H2O | 400 | 0 | 1.61 | 0.48 | 0.30 | 0.21 | 0.40 | 45.56 |
30 | 7.28 | 3.56 | 0.92 | 1.39 | 1.19 | 10.26 | ||
60 | 4.26 | 1.88 | 0.51 | 0.75 | 0.60 | 5.56 | ||
520 | 0 | 6.16 | 2.49 | 1.57 | 0.80 | 1.19 | 22.87 | |
30 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 3.19 | ||
60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.13 | ||
WMOS + AlCl3·6H2O | 400 | 0 | 2.97 | 1.06 | 0.51 | 0.43 | 0.63 | 23.04 |
30 | 5.47 | 2.83 | 0.77 | 1.85 | 1.77 | 11.21 | ||
60 | 3.46 | 1.30 | 0.41 | 0.67 | 0.67 | 4.25 | ||
520 | 0 | 6.66 | 2.31 | 1.39 | 0.75 | 1.18 | 12.30 | |
30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.82 | ||
60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.53 |
Sample | Temp./°C | N | C | H | S | O | H/C | O/C |
---|---|---|---|---|---|---|---|---|
wt., % | Atomic Ratio, % | |||||||
OS | 400 | 0.59 | 82.39 | 12.25 | 0.44 | 4.34 | 1.78 | 0.04 |
520 | 0.60 | 81.21 | 11.76 | 0.44 | 6.00 | 1.74 | 0.06 | |
DMOS+AlCl3·6H2O | 400 | 0.54 | 82.65 | 12.27 | 0.43 | 4.12 | 1.78 | 0.04 |
520 | 0.52 | 82.89 | 11.86 | 0.41 | 4.32 | 1.72 | 0.04 | |
WMOS+AlCl3·6H2O | 400 | 0.61 | 82.44 | 12.16 | 0.44 | 4.36 | 1.77 | 0.04 |
520 | 0.58 | 83.11 | 11.87 | 0.40 | 4.04 | 1.71 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Xu, L.; Wang, S.; Wang, H.; Deng, S.; Wang, H. Facilitation Effects of Acidic Chlorinated Salts on Reservoir Unblocking During In Situ Conversion of Huadian Oil Shale. Appl. Sci. 2025, 15, 4225. https://doi.org/10.3390/app15084225
Xu S, Xu L, Wang S, Wang H, Deng S, Wang H. Facilitation Effects of Acidic Chlorinated Salts on Reservoir Unblocking During In Situ Conversion of Huadian Oil Shale. Applied Sciences. 2025; 15(8):4225. https://doi.org/10.3390/app15084225
Chicago/Turabian StyleXu, Shaotao, Liang Xu, Senhao Wang, Hanxi Wang, Sunhua Deng, and Han Wang. 2025. "Facilitation Effects of Acidic Chlorinated Salts on Reservoir Unblocking During In Situ Conversion of Huadian Oil Shale" Applied Sciences 15, no. 8: 4225. https://doi.org/10.3390/app15084225
APA StyleXu, S., Xu, L., Wang, S., Wang, H., Deng, S., & Wang, H. (2025). Facilitation Effects of Acidic Chlorinated Salts on Reservoir Unblocking During In Situ Conversion of Huadian Oil Shale. Applied Sciences, 15(8), 4225. https://doi.org/10.3390/app15084225