Phenolic Profile and Antioxidant Activity of Extracts from Aerial Parts of Thymus vulgaris L. and Sideritis scardica Griseb.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extracts Preparation
2.1.1. Acetone Extract
2.1.2. Methanol Extract
2.1.3. Ethanol–Water Extract
2.1.4. Ethyl Acetate Extract
2.2. Flavonoid Content Determination
2.3. Phenolic Acid Determination
2.4. Total Polyphenol Content Determination
2.5. Determination of Antioxidant Activity Using the DPPH Method
2.6. Determination of Antioxidant Activity Using the FRAP Method
2.7. HPLC Analysis of the Tested Extracts
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and Phenolic Content
3.2. The Extraction Conditions
3.3. Correlation Coefficients of the Antioxidant Activity and Phenolic Content of the Tested Plant Extracts
3.4. Coefficients of Antioxidant Activity Depending of the Phenolic Compounds and Type of Extract
3.5. Phenolic Acid Profile of the Tested Plant Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, S.; Bisha, A.; Kumar Ghosh, S.; Jana, K.; Gayen, B.; Sahu, S.; Debnath, B. Herbal medicines: A potent approach to human diseases, their chief compounds, formulations, present status, and future aspects. Int. J. Membr. Sci. Technol. 2023, 10, 442–464. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent advances in natural polyphenol research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef] [PubMed]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.-M.; Stefanescu, R.; Bild, V.; Melnic, S.; et al. Medicinal plants of the family Lamiaceae in pain therapy: A Review. Pain Res. Manag. 2018, 44, 7801543. [Google Scholar] [CrossRef] [PubMed]
- Avasiloaiei, D.I.; Calara, M.; Brezeanu, P.M.; Murariu, O.C.; Brezeanu, C. On the future perspectives of some medicinal plants within Lamiaceae botanic family regarding their comprehensive properties and resistance against biotic and abiotic stresses. Genes 2023, 14, 955. [Google Scholar] [CrossRef]
- Moshari-Nasirkandi, A.; Alirezalu, A.; Alipour, H.; Amato, J. Screening of 20 species from Lamiaceae family based on phytochemical analysis, antioxidant activity and HPLC profiling. Sci. Rep. 2023, 13, 16987. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Sasikumar, J.M.; Erba, O.; Egigu, M.C. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon 2020, 6, e05027. [Google Scholar] [CrossRef]
- Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant activity of medicinal herbs and spices from plants of the Lamiaceae, Apiaceae and Asteraceae families: Chemometric interpretation of the data. Antioxidants 2023, 12, 2039. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; Majdoub, Y.O.E.; Ouadik, M.; Abdelilah, R.; Cavo, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef]
- Papanikolaou, K.; Kouloridas, K.; Rosvoglou, A.; Gatsas, A.; Georgakouli, K.; Deli, C.K.; Draganidis, D.; Argyropoulou, A.; Michailidis, D.; Fatouros, I.G.; et al. Characterization of the Sideritis scardica extract SidTea+TM and its effect on physiological profile, metabolic health and redox biomarkers in healthy adults: A randomized, double-blind, placebo-controlled study. Molecules 2024, 29, 1113. [Google Scholar] [CrossRef] [PubMed]
- Rehan, T.; Tahira, R.; Rehan, T.; Bibi, A.; Naeemullah, M. Screening of seven medicinal plants of family Lamiaceae for total phenolics, flavonoids and antioxidant activity. Pakhtunkhwa J. Life Sci. 2014, 2, 107–117. [Google Scholar]
- Kozłowska, M.; Laudy, A.E.; Przybył, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol. Pharm. 2015, 72, 757–767. [Google Scholar]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Madhuranga, H.D.T.; Samarakoon, N.A. Methods for determining in vitro antioxidant activity: Methodologies for the DPPH, FRAP, and H2O2 assays. J. Nat. Ayurvedic Med. 2023, 7, 000431. [Google Scholar] [CrossRef]
- Dontha, S. A review on antioxidant methods. Asian J. Pharm. Clin. Res. 2016, 9, 14–32. [Google Scholar] [CrossRef]
- Polish Pharmacopoeia V; Urząd Rejestracji Produktów Leczniczych, Medycznych i Produktów Biobójczych: Warszawa, Poland, 1990.
- Polish Pharmacopoeia X; Urząd Rejestracji Produktów Leczniczych, Medycznych i Produktów Biobójczych: Warszawa, Poland, 2014.
- Rossi, M.; Giussani, E.; Morelli, R.; Scalzo, R.; Nani, R.C.; Torreggiani, D. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int. 2003, 36, 999–1005. [Google Scholar] [CrossRef]
- Singelton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphoturgstic acid reagents. Am. J. Enol. Viticult 1965, 1, 44–58. [Google Scholar]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relations to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Zevallos, L.C.; Byrnec, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assay for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Mulugeta, S.M.; Gosztola, B.; Radácsi, P. Morphological and biochemical responses of selected species under drought. Herba Pol. 2022, 68, 1–10. [Google Scholar]
- Łabuda, H.; Papliński, R. Analysis of Free Phenolic Acids in the Pericarp of Bean. Electron. J. Pol. Agric. Univ. 2004, 7, 9. Available online: http://www.ejpau.media.pl/volume7/issue2/horticulture/abs-09.html (accessed on 5 March 2025).
- Alkufeidy, R.M.; Al Farraj, D.A.; Aljowaie, R.M.; Ali, M.A.; Elshikh, M.S. Chemical composition of Thymus vulgaris extracts and antibacterial activity against pathogenic multidrug resistance bacteria. Physiol. Mol. Plant Pathol. 2022, 117, 101745. [Google Scholar] [CrossRef]
- Aldosary, S.K.; El-Rahman, S.N.A.; Al-Jameel, S.S.; Alromihi, N.M. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Braz. J. Biol. 2023, 83, e244675. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef]
- Mokhtari, R.; Kazemi Fard, M.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme–sage mixture extracts. J. Food Qual. 2023, 1, 2602454. [Google Scholar] [CrossRef]
- Minarti, M.; Ariani, N.; Megawati, M.; Hidayat, A.; Hendra, M.; Primahana, G.; Darmawan, A. Potential antioxidant activity methods DPPH, ABTS, FRAP, total phenol and total flavonoid levels of Macaranga hypoleuca (Reichb. f. & Zoll.) leaves extract and fractions. E3S Web Conf. EDP Sci. 2024, 503, 07005. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and other bioactive compounds of Sideritis plants and their potential biological activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef] [PubMed]
- Çarıkçı, S.; Kılıç, T.; Gören, A.C.; Dirmenci, T.; Alim Toraman, G.Ö.; Topçu, G. Chemical profile of the Anatolian Sideritis species with bioactivity studies. Pharm. Biol. 2023, 61, 1484–1511. [Google Scholar] [CrossRef] [PubMed]
- Koleva, I.I.; Linssen, J.P.; van Beek, T.A.; Evstatieva, L.N.; Kortenska, V.; Handjieva, N. Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria. J. Sci. Food Agric. 2003, 83, 809–819. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Nowak, A.; Zielonka-Brzezicka, J.; Florkowska, K.; Duchnik, W.; Klimowicz, A. Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol. 2019, 65, 1–9. [Google Scholar]
- Selim, Y.; Helmy, H.; Hamed, M.A.; Abdel-latif, N. Chemical and biological studies of Thyme based on different solvents extraction. Egypt. J. Chem. 2023, 66, 247–253. [Google Scholar] [CrossRef]
- Burdejova, L.; Tobolkova, B.; Polovka, M.; Neugebauerova, J. Differentiation of medicinal plants according to solvents, processing, origin, and season by means of multivariate analysis of spectroscopic and liquid chromatography data. Molecules 2023, 28, 4075. [Google Scholar] [CrossRef]
- Yeasmen, N.; Islam, M.N. Ethanol as a solvent and hot extraction technique preserved the antioxidant properties of tamarind (Tamarindus indica) seed. J. Adv. Vet. Anim. Res. 2015, 2, 332–337. [Google Scholar] [CrossRef]
- Yanchev, N.; Petkova, N.; Ivanov, I.; Delev, D. Total polyphenolic content and antioxidant activity of different extracts from Sideritis scardica. Trop. J. Nat. Prod. Res. 2022, 6, 1113–1118. [Google Scholar] [CrossRef]
- Mróz, M.; Malinowska-Pańczyk, E.; Bartoszek, A.; Kusznierewicz, B. Comparative study on assisted solvent extraction techniques for the extraction of biologically active compounds from Sideritis raeseri and Sideritis scardica. Molecules 2023, 28, 4207. [Google Scholar] [CrossRef]
- Tsibranska, I.; Tylkowski, B.; Kochanov, R.; Alipieva, K. Extraction of biologically active compounds from Sideritis ssp. L. Food Bioprod. Process. 2011, 89, 273–280. [Google Scholar] [CrossRef]
- Duque-Soto, C.; Borrás-Linares, I.; Quirantes-Piné, R.; Falcó, I.; Sánchez, G.; Segura-Carretero, A.; Lozano-Sánchez, J. Potential antioxidant and antiviral activities of hydroethanolic extracts of selected Lamiaceae species. Foods 2022, 11, 1862. [Google Scholar] [CrossRef] [PubMed]
- Wisam, S.U.; Nahla, T.K.; Tariq, N.M. Antioxidant activities of thyme extracts. Pak. J. Nutr. 2018, 17, 46–50. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Yusnawan, E. The effectiveness of polar and non polar fractions of Ageratum conyzoides L. to control peanut rust disease and phytochemical screenings of secondary metabolites. J. Trop. Plant Pests Dis. 2013, 13, 159–166. [Google Scholar] [CrossRef]
- Zazouli, S.; Chigr, M.; Jouaiti, A. Effect of polar and nonpolar solvent on total phenolic and antioxidant activity of roots extracts of Caralluma europaea. Pharma Chem. 2016, 8, 191–196. [Google Scholar]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Irawan, C.; Putri, I.D.; Sukiman, M.; Utami, A.; Putri, R.K.; Lisandi, A.; Pratama, A.N. Antioxidant activity of DPPH, CUPRAC, and FRAP methods, as well as activity of alpha-glucosidase inhibiting enzymes from Tinospora crispa (L.) stem ultrasonic extract. Pharmacogn. J. 2022, 14, 511–520. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Alnasser, S.M. Total phenols compounds, ferric reducing antioxidant power and scavenging activities of Thymus vulgaris L. crop extracts: Analgesic, anti-inflammatory, anxiolytic, antidepressant responses in swiss strain male albino mice, and anti-bacterial effects. Pol. J. Environ. Stud. 2023, 32, 5469–5481. [Google Scholar] [CrossRef]
- Aboukhalaf, A.; Abdessadek, J.; Lahlou, Y.; Ikhiar, N.; Essaih, S.; Elbiyad, J.; Kalili, A.; El-Amraoui, B.; Belahsen, R. Assessment of phenolic and flavonoid contents, antioxidant and antimicrobial activities of Moroccan propolis. Rocz. Panstw. Zakl. Hig. 2024, 75, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Ahoua, A.R.C.; Kone, M.W.; Konan, A.G.; Bi, F.H.T.; Bonfoh, B. Antioxidant activity of eight plants consumed by great apes in Côte d’Ivoire. Afr. J. Biotechnol. 2012, 11, 11732–11740. [Google Scholar]
- Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M.; et al. HPLC, FTIR and GC-MS analyses of Thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules 2022, 27, 8512. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef]
Solvent | Extract Weight (g) | Efficiency (%) | |||
---|---|---|---|---|---|
Plant Material | Sideritis Aerial Parts | Thymi Aerial Parts | Sideritis Aerial Parts | Thymi Aerial Parts | |
ACT | 2.80 | 1.41 | 14.01 | 7.10 | |
MET | 6.20 | 5.56 | 31.05 | 27.82 | |
EtOH-H2O | 6.43 | 6.81 | 32.14 | 34.06 | |
EtOAc | 1.81 | 1.33 | 9.07 | 6.66 |
Solvent | Sideritis | Thyme | Mean | Sideritis | Thyme | Mean | Sideritis | Thyme | Mean |
---|---|---|---|---|---|---|---|---|---|
TPC (mg GA/g) | TFC (mg QE/g) | TPAC (mg CA/g) | |||||||
ACT | 189.39 a | 144.87 dc | 167.13 A | 20.63 d | 60.42 a | 40.52 A | 111.28 c | 38.89 f | 75.09 B |
MET | 164.11 cb | 179.57 ba | 171.84 A | 12.34 f | 15.7 e | 14.02 B | 92.72 d | 141.09 a | 116.9 A |
EtOH-H2O | 151.88 c | 125.4 d | 138.64 B | 10.57 f | 6.51 g | 8.54 C | 76.71 e | 119.1 b | 97.9 C |
EtOAc | 144.12 dc | 121.39 d | 132.76 B | 23.49 c | 55.85 b | 39.67 A | 76.69 e | 15.94 g | 46.31 D |
Mean | 162.38 A | 142.81 B | 16.76 B | 34.62 A | 89.35 A | 78.75 B |
Solvent | Sideritis | Thyme | Mean | Sideritis | Thyme | Mean |
---|---|---|---|---|---|---|
FRAP mg/g Trolox | DPPH% | |||||
ACT | 1.66 ba | 1.49 b | 1.57 A | 86.07 b | 55.67 e | 70.87 C |
MET | 1.16 c | 1.82 a | 1.49 A | 87.98 a | 77.26 d | 82.62 B |
EtOH-H2O | 1.09 dc | 1.47 b | 1.28 B | 85.75 b | 83.06 c | 84.4 A |
EtOAc | 0.88 d | 1.01 dc | 0.94 C | 85.75 b | 55.16 e | 70.46 C |
Acidum ascorbicum | 90.03 | |||||
Mean | 1.2 B | 1.45 A | 86.39 A | 67.79 B |
Sideritis | |||||
---|---|---|---|---|---|
Compound/AAC | TPC | TFC | TPAC | AAC–DPPH | AAC–FRAP |
TPC | x | 0.106035 | 0.895424 * | 0.148167 | 0.83135 * |
TFC | −0.26717 | x | 0.205463 | −0.4218 | 0.066284 |
TPAC | 0.57718 * | −0.93361 * | x | 0.272149 | 0.917172 * |
AAC–DPPH | 0.274637 | −0.99574 * | 0.940963 * | x | 0.048353 |
AAC–FRAP | 0.825931 * | −0.55946 | 0.789627 * | 0.591167 * | x |
Thymus |
Compound/AAC | Extract | ||||
---|---|---|---|---|---|
ACT | MET | EtOH-H2O | EtOAc | ||
TFC | TPAC | −0.998190 * | 0.975796 * | −0.968122 * | −0.999104 * |
AAC–DPPH | −0.999250 * | −0.995786 * | 0.982767 * | −0.999258 * | |
AAC–FRAP | −0.686423 | 0.984452 * | −0.935777 * | 0.961422 * | |
TPC | −0.939186 * | 0.890216 * | 0.820933 * | −0.970955 * | |
TPAC | AAC–DPPH | 0.999538 * | −0.991446 * | −0.993789 * | 0.999815 * |
AAC–FRAP | 0.658483 | 0.935648 * | 0.988061 * | −0.961763 * | |
TPC | 0.956980 * | 0.808368 | −0.723206 | 0.970589 * | |
AAC–DPPH | AAC–FRAP | 0.664808 | −0.967907 * | −0.968210 * | −0.965447 * |
TPC | 0.948541 * | −0.865067 * | 0.729254 | 0.970166 * | |
AAC–FRAP | TPC | 0.878578 * | −0.714550 | −0.933343 * | 0.503842 |
Phenolic Acids | ACT | MET | EtOH-H2O | EtOAc | ||||
---|---|---|---|---|---|---|---|---|
Thymi | Sideritis | Thymi | Sideritis | Thymi | Sideritis | Thymi | Sideritis | |
Chlorogenic acid | x | x | x | x | ||||
Cafeic acid | x | x | x | x | ||||
Protocatechuic acid | x | |||||||
m-Cumaric acid | x | |||||||
Ferulic acid | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walasek-Janusz, M.; Papliński, R.; Mysiak, B.; Nurzyńska-Wierdak, R. Phenolic Profile and Antioxidant Activity of Extracts from Aerial Parts of Thymus vulgaris L. and Sideritis scardica Griseb. Appl. Sci. 2025, 15, 3842. https://doi.org/10.3390/app15073842
Walasek-Janusz M, Papliński R, Mysiak B, Nurzyńska-Wierdak R. Phenolic Profile and Antioxidant Activity of Extracts from Aerial Parts of Thymus vulgaris L. and Sideritis scardica Griseb. Applied Sciences. 2025; 15(7):3842. https://doi.org/10.3390/app15073842
Chicago/Turabian StyleWalasek-Janusz, Magdalena, Rafał Papliński, Barbara Mysiak, and Renata Nurzyńska-Wierdak. 2025. "Phenolic Profile and Antioxidant Activity of Extracts from Aerial Parts of Thymus vulgaris L. and Sideritis scardica Griseb." Applied Sciences 15, no. 7: 3842. https://doi.org/10.3390/app15073842
APA StyleWalasek-Janusz, M., Papliński, R., Mysiak, B., & Nurzyńska-Wierdak, R. (2025). Phenolic Profile and Antioxidant Activity of Extracts from Aerial Parts of Thymus vulgaris L. and Sideritis scardica Griseb. Applied Sciences, 15(7), 3842. https://doi.org/10.3390/app15073842