How Artificial Intelligence-Assisted Colour Lighting Can Improve Learning: Evidence from Recent Classrooms Studies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of the Problem: Objectives, Questions and Hypotheses
- GO1. To investigate the impact of colour lighting on learning processes within primary school settings.
- GO2. To investigate the effectiveness of ‘Dynamic Colour’ in primary school settings and its impact on learning processes.
- SO1. To evidence the impact of colour lighting on pupils’ cognitive processes in primary school settings.
- SO2. To evidence the impact of colour lighting on pupils’ basic instrumental learning in primary school settings.
- SO3. To evidence the impact of colour lighting on pupils’ affective processes in primary school settings.
- SO4. To examine the advantages and disadvantages associated with the implementation of ‘dynamic colour’ in primary schools.
- SO5. To examine the possibility of using artificial intelligence to assist teaching decisions on dynamic lighting.
- RQ1. How does the use of coloured light influence cognitive processes of primary school pupils?
- RQ2. How does the use of coloured light influence basic instrumental learning of primary school pupils?
- RQ3. How does the use of coloured light influence affective processes of primary school pupils?
- RQ4. What are the advantages and disadvantages associated with the application of ‘dynamic colour’ in primary education settings?
- RQ5. Is it possible to use artificial intelligence to assist teaching decisions on dynamic lighting?
- H1. The use of colour lighting in primary schools’ environments promotes the development of pupils’ cognitive processes.
- H2. The implementation of coloured lighting in primary education classrooms facilitates an enhancement in the attainment of basic instrumental learning among pupils.
- H3. The implementation of colour lighting in primary schools facilitates an improvement in pupils’ self-assessment of emotional processes.
- H4. The implementation of ‘dynamic colour’ lighting in primary educational environments offers the advantage of the flexibility of coloured lighting to adapt to the requirements of various activities.
- H5. Artificial intelligence can be a good assistant for teaching decisions about dynamic lighting.
2.2. Methodology
- V1. Cognitive Processes: The present investigation will evaluate three of its dimensions (figurative creativity, attentional focus and regulation of impulsivity). Figurative creativity will be measured using four indicators: originality, elaboration, fluency and flexibility.
- V2. Instrumental learning: Two of its dimensions will be examined (written linguistic competence and mathematical competence). The score for written linguistic competence is derived from two indicators: written expression and written comprehension.
- V3. Affective processes: Three of its facets will be analysed (level of satisfaction, energy level and feeling). The third facet is nominal; however, it will be converted into a numerical format for the purpose of statistical analysis.
- For the variable ‘cognitive processes’: Torrance’s creativity assessment documented by Artiles Hernández et al. [49], which encompasses four indicators (originality, elaboration, fluency and flexibility), in conjunction with Faces’ assessment of attention, according to Thurstone et al. [50], which presents the regulation of the attention network and impulsivity. Both assessments distinctly classify the dependent variables as quantitative ratio variables, wherein net attention can range from 0 to 60, impulsivity control can vary from 0 to 100, and figurative creativity can extend from 0 to approximately 300.
- For the ‘instrumental learning’ variable: Andalusian regionally standardised assessments in language (restricted to the dimensions of written expression and comprehension) and mathematics, although modified to align with the expected duration of the tests [51,52,53,54,55,56], were used. The level of the mathematical competence test was maintained at a maximum of 13 points, while the linguistic competence test allowed a total of 34 points, 22 of which corresponded to written expression and 12 to written comprehension.
- For the variable ‘affective processes’: A questionnaire integrating the foundational study by Suh et al. [3], composed of three self-perception questions (two Likert-scaled out of a score of ten and one nominal), was used. For the statistical coding of the final question, we used the conversion criteria outlined in Table 1.
- To mitigate the influence of weather factors on the lighting conditions, we mitigated their effects while ensuring that students did not experience a sense of confinement resulting from the absence of natural light.
- To increase the sample size (which was limited in the initial counterbalanced structure), we administered tests to all participants in the experimental cohort on a daily basis in experimental conditions 2 and 3, thus foregoing the counterbalanced approach.
- The introduction of coloured lighting took place one month before the start of data collection in each experimental situation, thus integrating it into the usual activities of the educators in the classroom on a daily basis at the choice of the educators themselves. In this way, the students became accustomed to the exposure to coloured light, so that after one month the experimental tests were approached as normally as possible. In this way, we were able to alleviate possible biases of the ‘Hawthorne’ motivation effect.
- To reduce the learning effect, according to Chacón-Moscoso et al. [35], the experimental situations were approached by scheduling the data collection of the different light scenarios with a spacing of two weeks, trying to reduce the students’ memory of the tests. In addition, to avoid any alteration of students’ behavioural and emotional responses, the purpose of the study was not disclosed, and all activities were framed within the usual classroom practices.
- To further minimise recall biases, in experimental conditions 2 and 3, the sequence of the ‘coloured light’ scenarios was modified.
2.3. Sample and Context of the Study: Experimental Situation
2.4. Ethical Considerations
3. Results
3.1. Cognitive Processes
3.1.1. Descriptive Analysis
3.1.2. Variance Analysis
3.1.3. Comparative Analysis
3.1.4. Summary to Support the Conclusions
3.2. Instrumental Learning
3.2.1. Descriptive Analysis
3.2.2. Variance Analysis
3.2.3. Comparative Analysis
3.2.4. Summary to Support the Conclusions
3.3. Affective Processes
3.3.1. Descriptive Analysis
3.3.2. Variance Analysis
3.3.3. Comparative Analysis
3.3.4. Summary to Support the Conclusions
3.4. Extreme Values of the Dependent Variables
4. Discussion
5. Conclusions
6. Limitations and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CCT | Correlated colour temperature |
GO | General objective |
SO | Specific objective |
RQ | Research question |
H | Hypotheses |
V | Variable |
LED | Light-emitting diode |
References
- Quiles-Rodríguez, J.; Palau, R. Effects of Classroom Colour on Learning Processes for a Future Smart Classroom: A Systematic Review. In Challenges of the Educational System in Contemporary Society; Antolí, J., Ed.; IGI Global: Hershey, PN, USA, 2023; pp. 222–241. [Google Scholar] [CrossRef]
- Arbona Hidalgo, L. Estudio de la Influencia de la Iluminación en la Percepción de los Estudiantes Universitarios. Ph.D. Dissertation, Universitat Politècnica de València, Valencia, Spain, 2021. [Google Scholar]
- Suh, J.K.; Park, E.K.; Iwamoto, D. Color-filtered lighting: Visual and emotional impact in learning environments. Intern. J. Arch. Spat. Environ. Des. 2020, 14, 41–55. [Google Scholar] [CrossRef]
- Rajae-Joordens, R.J.E. The Effects of Colored Light on Valence and Arousal. In Philips Research Book Series; Westerink, J., Krans, M., Ouwerkerk, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 12, pp. 65–84. [Google Scholar] [CrossRef]
- Kombeiz, O.; Steidle, A. Facilitation of creative performance by using blue and red accent lighting in work and learning areas. Ergonomics 2018, 61, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Poldma, T. Learning the dynamic processes of color and light in interior design. J. Inter. Des. 2009, 34, 19–33. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poortr, H.; Van Leperen, W.; Harbinson, J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, F.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 2010, 75, 128–133. [Google Scholar] [CrossRef]
- Araujo, J.; Rodriguez, M.J.; Postolache, O.; Cercas, F.; Martín, F.F.; Martínez, A.L. Heart Rate Variability Analysis in Healthy Subjects Under Different Colored Ligthing Conditions. In Proceedings of the IEEE International Instrumentation and Measuremente Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Jiang, A.; Schlacht, I.L.; Yao, X.; Foing, B.; Fang, Z.; Westland, S.; Hemingray, C.; Yao, W. Space Habitat Astronautics: Multicolour Lighting Psychology in a 7-Day Simulated Habitat. Space Sci. Technol. 2022, 2022, 9782706. [Google Scholar] [CrossRef]
- Manca, S.; Cerina, V.; Tobia, V.; Sacchi, S.; Fornara, F. The effect of school design on users’ responses: A systematic review (2008–2017). Sustainability 2020, 12, 3453. [Google Scholar] [CrossRef]
- Quiles-Rodríguez, J.; Palau, R. Effects of colored lighting on learning processes: Towards a smart classroom. J. Technol. Sci. Educ. 2024, 14, 484–506. [Google Scholar] [CrossRef]
- Von Castell, C.; Stelzmann, D.; Oberfeld, D.; Welsch, R.; Hecht, H. Cognitive performance and emotion are indifferent to ambient color. Color Res. Appl. 2017, 43, 65–74. [Google Scholar] [CrossRef]
- Godwin, K.; Leroux, A.; Scupelli, P.; Fisher, A. Classroom Design and Children’s Attention Allocation: Beyond the Laboratory and into the Classroom. Mind Brain Educ. 2022, 16, 239–251. [Google Scholar] [CrossRef]
- Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The impact of classroom design on pupils’ learning: Final results of a holistic, multi-level analysis. Build. Environ. 2015, 89, 118–133. [Google Scholar] [CrossRef]
- Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The Holistic Impact of Classroom Spaces on Learning in Specific Subjects. Environ. Behav. 2017, 49, 425–451. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Kosslyn, S.M. Cognitive Psychology. Mind and Brain; Pearson Education Limited: Harlow, UK, 2014. [Google Scholar]
- Mehta, R.; Zhu, R.J. Blue or red? Exploring the effect of color on cognitive task performances. Science 2009, 5918, 1226–1229. [Google Scholar] [CrossRef]
- Duyan, F.; Ünver, R. A research on the effect of classroom wall colours on student’s attention. A/Z ITU J. Fac. Architec. 2016, 13, 73–78. [Google Scholar] [CrossRef]
- Tuszyńska-Bogucka, W.; Borys, M.; Dzieńkowski, M.; Kwiatkowski, B.; Kocki, W.; Pełka, J.; Bogucki, J. Use of Eye Tracking for Designing of Learning Spaces. In Proceedings of the ICERI2018 Proceedings 11th Annual International Conference of Education, Research and Innovation Seville, Spain, 12–14 November 2018; IATED: Seville, Spain, 2018; pp. 5360–5368. [Google Scholar] [CrossRef]
- Pourbagher, S.; Azemati, H.R.; Saleh Sedgh Pour, B. Classroom wall color: A multiple variance analysis on social stress and concentration in learning environments. Int. J. Educ. Manag. 2020, 35, 189–200. [Google Scholar] [CrossRef]
- Mogas-Recalde, J.; Palau, R. Classroom lighting and its effect on student learning and performance: Towards smarter conditions. Smart Innovat. Syst. Tech. 2021, 197, 3–12. [Google Scholar] [CrossRef]
- Llinares, C.; Castilla, N.; Higuera-Trujillo, J.L. Do attention and memory tasks require the same lighting? A study in university classrooms. Sustainability 2021, 13, 8374. [Google Scholar] [CrossRef]
- Hviid, C.; Pedersen, C.; Dabelsteen, K. A field study of the individual and combined effect of ventilation rate and lighting conditions on pupils’ performance. Build. Environ. 2020, 171, 106608. [Google Scholar] [CrossRef]
- Gross, R. Psychology: The Science of Mind and Behaviour, 7th ed.; Hodder Education: London, UK, 2015. [Google Scholar]
- Mora, F. Neuroeducación, Solo Se Puede Aprender Aquello Que Se Ama; Alianza Ensayo: Madrid, Spain, 2013. [Google Scholar]
- Lewinski, P. Effects of classrooms’ architecture on academic performance in view of telic versus paratelic motivation: A review. Front. Psyc. 2015, 6, 746. [Google Scholar] [CrossRef]
- Vidal Rojas, R.A.; Vera Avendaño, C. Influencia del color del aula en los resultados de aprendizaje en 3 año básico: Estudio comparativo en un colegio particular subvencionado en Santiago de Chile. Rev. Educ. 2020, 44, 91–113. [Google Scholar] [CrossRef]
- Stone, N. Designing effective study environments. J. Environ. Psychol. 2001, 21, 179–190. [Google Scholar] [CrossRef]
- Gilavand, A. Investigating the Impact of Environmental Factors on Learning and Academic Achievement of Elementary Students: Review. Inter. Jour. Med. Res. H. Sci. 2016, 5, 360–369. [Google Scholar]
- Englebrecht, K. The Impact of Color on Learning. Available online: http://sdpl.coe.uga.edu/HTML/W305.pdf (accessed on 1 November 2024).
- Küller, R.; Mikellides, B.; Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- Salleh, N.M.; Kamaruzzaman, S.N.; Riley, M.; Ahmad Zawawi, E.M.; Sulaiman, R. A quantitative evaluation of indoor environmental quality in refurbished kindergarten buildings: A Malaysian case study. Build. Environ. 2015, 94, 723–733. [Google Scholar] [CrossRef]
- Quiles-Rodríguez, J.; Mateo-Sanz, J.M.; Palau, R. How does Coloured Lighting Influence the Affective Processes of Pupils? Interact. Des. Arch. J. 2024, 60, 103–121. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Lee, J. Comparison between psychological responses to ‘object colour produced by paint colour’ and ‘object colour produced by light source. Indoor Built Environ. 2021, 30, 502–519. [Google Scholar] [CrossRef]
- Ley Orgánica 3/2020, de 29 de Diciembre, por la que se Modifica la Ley Orgánica 2/2006, de 3 de Mayo, de Educación. BOE núm. 340. Available online: https://www.boe.es/eli/es/lo/2020/12/29/3 (accessed on 22 March 2025).
- Quiles-Rodríguez, J.; Palau, R. Efectos de la luz de color sobre la competencia lingüística escrita del alumnado de Primaria. Prof. Rev. Curric. Form. Profr. 2024, 28, 179–200. [Google Scholar] [CrossRef]
- Quiles-Rodríguez, J.; Palau, R. ¿Puede la luz de color ayudar a mejorar la adquisición de la competencia matemática? In Innovación e Investigación con Tecnología Educativa: Explorando las Posibilidades de la Educación del Futuro; Tejada Garitano, E., Garay Ruiz, U., López de la Serna, A., Eds.; Dykinson: Madrid, Spain, 2024. [Google Scholar]
- Jee, S.D.; Kim, C.B. Subjetive evaluation on the color temperatures of LED ilumination in the classroom. J. Korean Inst. Illum. Electr. Install. Eng. 2011, 25, 30–41. [Google Scholar] [CrossRef]
- Choi, K.; Suk, H. Dynamic lighting system for the learning environment: Performance of elementary students. Opt. Express 2016, 24, A907–A916. [Google Scholar] [CrossRef]
- Lekan-Kehinde, M.; Asojo, A. Impact of lighting on children’s learning environment: A literature review. WIT Trans. Ecol. Environ. 2021, 253, 371–380. [Google Scholar] [CrossRef]
- Plympton, P.; Conway, S.; Epstein, K. Daylighting in Schools: Improving Student Performance and Health at a Price Schools CanAfford. In Proceedings of the American Solar Energy Society Conference, Madison, WI, USA, 16 June 2000. [Google Scholar]
- López-Villanueva, D.; Palau, R.; Santiago, R. ¿Cómo puede la IA ayudar a la personalización del aprendizaje? In Inteligencia Artificial en la Microeducación: Transformando el Aula del Futuro; Muñoz, J.M., Lorenzo, N., Suñé, X., Eds.; Observatorio de Innovación Educativa y Cultura Digital (ODITE): Barcelona, Spain, 2024. [Google Scholar]
- Román-García, M.; Prendes-Espinosa, M.P. El informe del TFM. In Trabajo Fin de Máster en Tecnología Educativa. Orientaciones para la Elaboración y Criterios de Calidad; Prendes Espinosa, M.P., González Calatayud, V., Eds.; Universidad de Murcia: Murcia, Spain, 2018; pp. 59–67. [Google Scholar]
- López Fuentes, R.; Salmerón Vilchez, P. Proceso de Investigación Educativa I: Investigación Experimental. In Innovación Docente e Investigación Educativa. Máster Universitario de Educación Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas; López Fuentes, R., Ed.; Universidad de Granada: Granada, Spain, 2011; pp. 24–40. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=3855936 (accessed on 15 March 2025).
- Campbell, D.T.; Stanley, J.C. Experimental and Quasi-Experimental Designs for Research; Rand McNally & Company: Chicago, IL, USA, 1966. [Google Scholar]
- Luri, G. La Escuela No Es un Parque de Atracciones. Una Defensa del Conocimiento Poderoso; Ariel: Barcelona, Spain, 2020; p. 410. [Google Scholar]
- Toala Ponce, S.R.; Gómez Pinillo, L.Y.; Guevara Heredia, R.N.; Quiñonez Ortiz, E.C. Application of Bloom’s taxonomy to improve teaching-learning. Sapienza Int. J. Interdis. Stud. 2022, 3, 176–189. [Google Scholar] [CrossRef]
- Artiles Hernández, C.; Jiménez González, J.E.; Rodríguez Rodríguez, C.; García Miranda, E. Adaptación y Baremación del Test de Pensamiento Creativo de Torrance: Expresión Figurada. Educación Primaria y Secundaria; Consejería de Educación, Cultura y Deportes del Gobierno de Canarias, Dirección General de Ordenación e Innovación Educativ: Santa Cruz de Tenerife, Spain, 2007. [Google Scholar]
- Thurstone, L.L.; Yela, M. Caras-R. Test de Percepción de Diferencias-Revisado. Manual, 13th ed; TEA Ediciones: Barcelona, Spain, 2019. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Lingüística; Junta de Andalucía: Seville, Spain, 2017. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Matemática; Junta de Andalucía: Seville, Spain, 2017. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Lingüística; Junta de Andalucía: Seville, Spain, 2018. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Matemática; Junta de Andalucía: Seville, Spain, 2018. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Lingüística; Junta de Andalucía: Seville, Spain, 2019. [Google Scholar]
- Agencia Andaluza de Evaluación Educativa (AGAEVE). Evaluación Final de Educación Primaria. Competencia Matemática; Junta de Andalucía: Seville, Spain, 2019. [Google Scholar]
- European Parliament. Reglamento (UE) 2016/679 del Parlamento Europeo y del Consejo, de 27 de Abril de 2016, Relativo a la Protección de las Personas Físicas en lo Que Respecta al Tratamiento de Datos Personales y a la Libre Circulación de Estos Datos y por el Que se Deroga la Directiva 95/46/CE (Reglamento General de Protección de Datos). DOUE núm. 119. Available online: https://www.boe.es/doue/2016/119/L00001-00088.pdf (accessed on 22 March 2025).
- Ley Orgánica 3/2018, de 5 de Diciembre, de Protección de Datos Personales y Garantía de los Derechos Digitales. BOE núm. 294. Available online: https://www.boe.es/eli/es/lo/2018/12/05/3 (accessed on 22 March 2025).
- Quiles-Rodríguez, J.; Palau, R. New evidence on the influence of coloured lighting on pupil’ cognitive processes. Electronics 2024, 13, 3005. [Google Scholar] [CrossRef]
- Quiles-Rodríguez, J.; Palau, R. New evidence on the influence of coloured lighting on pupils’ affective processes. In Educación 360: Emociones, Tecnología, Evaluación e Inclusión en la Era Digital; Romero García, C., Buzón García, O., Eds.; Dykinson: Madrid, Spain, 2024. [Google Scholar]
- Nieto-Vallejo, A.E.; Camacho, J.E.; Cuervo-Pulido, R.; Hernandez-Mihajlovic, E. Dynamic Lighting System to Increase the Attention of Design Students in the Classroom. Revist. Facult. Ingen. 2021, 30, e12233. [Google Scholar] [CrossRef]
- Muñoz, J.M.; Lorenzo, N.; Suñé, X. Inteligencia artificial en la Microeducación: Transformando el Aula del Futuro. In Inteligencia Artificial en la Microeucación: Transformando el Aula del Futuro; Muñoz, J.M., Lorenzo, N., Suñé, X., Eds.; Observatorio de Innovación Educativa y Cultura Digital (ODITE): Barcelona, Spain, 2024. [Google Scholar]
- Llurba, C.; Palau, R.; Mogas, J. Learning Analytics for Smart Classrooms. In Encyclopedia of Data Science and Machine Learning; Wang, J., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 1717–1731. [Google Scholar] [CrossRef]
- Unciti, O.; Palau, R. Teacher decision making tool: Development of a prototype to facilitate teacher decision making in the classroom. J. Technol. Sci. Educ. 2023, 13, 740–760. [Google Scholar]
- Colomer Granero, A.; Higuera Trujillo, J.L.; Naranjo Ornedo, V.; Llinares Millán, M.D.C. La Inteligencia Artificial y su contribución a la optimización de la atención y memoria de los estudiantes a través del diseño del aula. In Proceedings of the EDIFICATE. I Congreso de Escuelas de Edificación y Arquitectura Técnica de España, Valencia, Spain, 4–5 November 2021; Universitat Politècnica de València: Valencia, Spain, 2021; pp. 473–482. [Google Scholar] [CrossRef]
- Sajja, R.; Sermet, Y.; Cikmaz, M.; Cwiertny, D.; Demir, I. Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education. Information 2024, 15, 596. [Google Scholar] [CrossRef]
- Shi, L.; Choi, I. A Systematic Review on Artificial Intelligence in Supporting Teaching Practice: Application Types, Pedagogical Roles, and Technological Characteristics. In Uses of Artificial Intelligence in STEM Education; Zhai, X., Krajcik, J., Eds.; Oxford University Press: Oxford, UK, 2024. [Google Scholar] [CrossRef]
- Fang, P.; Wang, M.; Li, J.; Zhao, Q.; Zheng, X.; Gao, H. A Distributed Intelligent Lighting Control System Based on Deep Reinforcement Learning. Appl. Sci. 2023, 13, 9057. [Google Scholar] [CrossRef]
Assigned Score | Sentiment Expressed by Students |
---|---|
1 | empty, pressured, anxious, disappointed, disillusioned, bad, fatal, painful, anger |
2 | uncomfortable, discouraged, bored, scared, a little bit bad, overwhelmed, tired, weird, cannot see, strange, blind, confused, asleep, sad, bad taste |
3 | equal, normal, nothing, regular, calm, hard-working, quiet, relaxed, peaceful, prepared, average, medium |
4 | kind, easy-going, nice, comfortable, motivated, excited/sentimental, content, joyful, happy, proud, inspired, nervous/hyperactive, environmental, cheerful, confident, beautiful, nature, interested, fun |
5 | very good, happy, great, excellent, thrilled, very happy, energetic, excited, hardworking, impacted, very comfortable, imaginative |
Natural Light | Green Light | Purple Light | Orange Light | ||
---|---|---|---|---|---|
Experimental situation 1 | 1009 lx | 1691 lx | 1437 lx | 1375 lx | |
Cloudy day | 5100 K | 5037 K | 5150 K | 4658 K | |
Wavelength: peak values at 460 nm and 700 nm | Wavelength: medium and equal density between 460 nm and 650 nm | Wavelength: peak values at 360 nm and 800 nm | Wavelength: peak values at 720 nm | ||
1692 lx | 2083 lx | 1893 lx | 1851 lx | ||
Clear day | 3453 K | 4047 K | 4133 K | 3171 K | |
Wavelength: peak values at 460 nm and 700 nm | Wavelength: medium and equal density between 460 nm and 650 nm | Wavelength: peak values at 360 nm and 800 nm | Wavelength: peak values at 680 nm | ||
Experimental situation 2 | 1196 lx | 1679 lx | 1389 lx | 1016 lx | |
5385 K | 5589 K | 5438 K | 4064 K | ||
Wavelength: maximum values at 460 nm and 700 nm | Wavelength: medium and equal density between 460 nm and 600 nm | Wavelength: maximum values at 360 nm and 800 nm | Wavelength: maximum values in 720 nm | ||
Experimental situation 3 | 980 lx | 907 lx | 846 lx | 775 lx | |
3963 K | 4239 K | 4004 K | 3502 K | ||
Wavelength: maximum values in 660 nm | Wavelength: maximum values in 520 nm | Wavelength: maximum values in 360 nm | Wavelength: maximum values in 720 nm |
Natural Light | Natural Light 2 | Natural Light 3 | Natural Light 4 | ||
---|---|---|---|---|---|
Experimental situation 1 | Cloudy day | 821 lx | |||
5005 K | |||||
Wavelength: peak values at 460 nm and 700 nm | |||||
1842 lx | |||||
Clear day | 3208 K | ||||
Wavelength: peak values at 460 nm and 700 nm | |||||
Experimental situation 3 | 976 lx | 992 lx | 1008 lx | 975 lx | |
4004 K | 3901 K | 4010 K | 3953 K | ||
Wavelength: maximum values in 670 nm | Wavelength: maximum values in 660 nm | Wavelength: maximum values in 650 nm | Wavelength: maximum values in 660 nm |
Cognitive Variables and Dimensions | Natural Light | Orange Light | Green Light | Purple Light |
---|---|---|---|---|
Net attention (A-E) (level over 60) | median 35.500 mean 35.857 n = 42 | median 43.000 mean 41.442 n = 43 | median 40.000 mean 41.310 n = 42 | median 44.000 mean 44.881 n = 42 |
Impulsivity control (ICI) (level over 100) | median 90.100 mean 89.379 n = 42 | median 92.900 mean 88.407 n = 43 | median 90.200 mean 89.105 n = 42 | median 94.750 mean 91.974 n = 42 |
Figurative creativity | median 171.000 mean 173.000 n = 41 | median 204.000 mean 198.857 n = 42 | median 207.000 mean 202.095 n = 42 | median 211.000 mean 200.829 n = 42 |
Cognitive Variables and Dimensions | Natural Light | Natural2 Light | Natural3 Light | Natural4 Light |
---|---|---|---|---|
Net attention (A-E) (level over 60) | median 37.000 mean 38.355 n = 31 | median 38.000 mean 40.194 n = 31 | median 42.500 mean 40.700 n = 30 | median 48.000 mean 45.552 n = 29 |
Impulsivity control (ICI) (level over 100) | median 93.300 mean 87.406 n = 31 | median 92.400 mean 89.716 n = 31 | median 94.900 mean 90.470 n = 30 | median 96.200 mean 90.400 n = 29 |
Figurative creativity | median 131.000 mean 125.633 n = 30 | median 136.500 mean 140.906 n = 32 | median 161.000 mean 162.667 n = 30 | median 144.000 mean 159.806 n = 31 |
Kruskal–Wallis Test | Net Attention (Level over 60) | Impulsivity Control (Level over 100) | Figurative Creativity | ||||||
---|---|---|---|---|---|---|---|---|---|
Factor | statics | df | p | statics | df | p | statics | df | p |
Coloured light scenarios | 17.694 | 3 | <0.001 | 2.820 | 3 | 0.420 | 8.077 | 3 | 0.044 |
Post Hoc Comparisons | Net Attention (Level over 60) | Impulsivity Control (Level over 100) | Figurative Creativity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | ||
Natural | Orange | −0.602 | 0.037 | 0.006 | 0.093 | 1.000 | 0.852 | −0.449 | 0.256 | 0.027 |
Green | −0.587 | 0.047 | 0.012 | 0.026 | 1.000 | 0.894 | −0.505 | 0.137 | 0.022 | |
Purple | −0.972 | <0.001 | <0.001 | −0.247 | 1.000 | 0.173 | −0.483 | 0.182 | 0.014 | |
Orange | Green | 0.014 | 1.000 | 0.839 | −0.066 | 1.000 | 0.749 | −0.056 | 1.000 | 0.941 |
Purple | −0.370 | 0.538 | 0.155 | −0.340 | 0.715 | 0.236 | −0.034 | 1.000 | 0.807 | |
Green | Purple | −0.385 | 0.479 | 0.106 | −0.273 | 1.000 | 0.135 | 0.022 | 1.000 | 0.864 |
Independent Samples t-Test and Mann–Whitney | Net Attention (Level over 60) | Impulsivity Control (Level over 100) | Figurative Creativity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Statistic | df | p | Effect Size | Statistic | df | p | Effect Size | Statistic | df | p | Effect Size | |
Day 1A | Student | −1.786 | 14 | 0.096 | −0.963 | 0.308 | 14 | 0.763 | 0.166 | 2.450 | 13 | 0.029 | 1.342 |
Natural light | M-W | 14.000 | 0.140 | −0.491 | 0.954 | 0.036 | 41.000 | 0.055 | 0.640 | ||||
Day 2A | Student | 0.537 | 14 | 0.600 | 0.290 | −0.109 | 14 | 0.914 | −0.059 | 1.568 | 14 | 0.139 | 0.905 |
Orange light | M-W | 29.000 | 0.909 | 0.055 | 27.500 | 1.000 | 0.000 | 34.000 | 0.262 | 0.417 | |||
Day 3A | Student | 0.525 | 14 | 0.608 | 0.283 | −0.117 | 14 | 0.909 | −0.063 | 2.185 | 14 | 0.046 | 1.179 |
Green light | M-W | 31.500 | 0.692 | 0.145 | 25.000 | 0.819 | −0.091 | 37.000 | 0.308 | 0.345 | |||
Day 4A | Student | 0.718 | 12 | 0.487 | 0.400 | 1.536 | 12 | 0.150 a | 0.857 | −0.064 | 13 | 0.950 | −0.037 |
Purple light | M-W | 27.500 | 0.546 | 0.222 | 32.500 | 0.200 a | 0.444 | 23.500 | 0.896 | 0.068 | |||
Day 1B | Student | 0.301 | 36 | 0.765 | 0.098 | 0.608 | 36 | 0.547 | 0.198 | 1.093 | 36 | 0.282 | 0.355 |
Natural light | M-W | 198.00 | 0.608 | 0.100 | 181.000 | 0.988 | 0.006 | 209.500 | 0.396 | 0.164 | |||
Day 2B | Student | 0.720 | 37 | 0.476 | 0.231 | −0.415 | 37 | 0.681 | −0.133 | 1.248 | 37 | 0.220 | 0.400 |
Green light | M-W | 218.000 | 0.438 | 0.147 | 160.000 | 0.406 | −0.158 | 220.000 | 0.407 | 0.158 | |||
Day 3B | Student | 0.226 | 34 | 0.822 | 0.076 | 0.531 | 34 | 0.599 | 0.177 | −4.315 | 34 | <0.001 | −1.441 |
Purple light | M-W | 163.500 | 0.962 | 0.012 | 156.000 | 0.873 | −0.034 | 51.000 | <0.001 | −0.684 | |||
Day 4B | Student | −0.404 | 37 | 0.688 | −0.130 | −0.826 | 37 | 0.414 | −0.265 | 0.326 | 37 | 0.746 | 0.104 |
Orange light | M-W | 172.500 | 0.632 | −0.092 | 158.000 | 0.371 | −0.168 | 201.500 | 0.757 | 0.061 |
Cognitive Variables and Dimensions | Natural Light | Orange Light | Green Light | Purple Light |
---|---|---|---|---|
Reading comprehension (level over 22) | median 17.000 mean 16.488 n = 43 | median 18.000 mean 17.951 n = 41 | median 18.500 mean 17.762 n = 42 | median 18.000 mean 17.267 n = 45 |
Written expression (level over 12) | median 7.000 mean 6.268 n = 41 | median 10.000 mean 9.634 n = 43 | median 10.000 mean 8.786 n = 42 | median 10.000 mean 9.233 n = 43 |
Mathematical competence (level over 13) | median 8.000 mean 7.765 n = 44 | median 10.000 mean 9.377 n = 43 | median 9.500 mean 9.351 n = 42 | median 10.000 mean 9.405 n = 42 |
Cognitive Variables and Dimensions | Natural Light | Natural2 Light | Natural3 Light | Natural4 Light |
---|---|---|---|---|
Reading comprehension (level over 22) | median 20.000 mean 19.567 n = 30 | median 20.000 mean 19.750 n = 32 | median 21.000 mean 19.281 n = 32 | median 19.000 mean 18.438 n = 32 |
Written expression (level over 12) | median 9.000 mean 8.000 n = 30 | median 8.000 mean 8.063 n = 32 | median 9.000 mean 8.750 n = 32 | median 8.000 mean 7.871 n = 31 |
Mathematical competence (level over 13) | median 8.335 mean 8.275 n = 32 | median 9.000 mean 8.849 n = 32 | median 9.000 mean 8.729 n = 31 | median 9.250 mean 9.034 n = 32 |
Kruskal–Wallis Test | Reading Comprehension (Level over 22) | Written Expression (Level over 12) | Mathematical Competence (Level over 13) | ||||||
---|---|---|---|---|---|---|---|---|---|
Factor | statics | df | p | statics | df | P | statics | df | p |
Coloured light scenarios | 2.003 | 3 | 0.572 | 33.024 | 3 | <0.001 | 14.221 | 3 | 0.003 |
Post Hoc Comparisons | Reading Comprehension (Level over 22) | Written Expression (Level over 12) | Mathematical Competence (Level over 13) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | ||
Natural | Orange | −0.369 | 0.558 | 0.217 | −1.298 | <0.001 | <0.001 | −0.666 | 0.013 | 0.003 |
Green | −0.321 | 0.844 | 0.238 | −0.971 | <0.001 | <0.001 | −0.655 | 0.017 | 0.003 | |
Purple | −0.196 | 1.000 | 0.526 | −1.143 | <0.001 | <0.001 | −0.678 | 0.012 | 0.001 | |
Orange | Green | 0.048 | 1.000 | 0.950 | 0.327 | 0.829 | 0.149 | 0.011 | 1.000 | 1.000 |
Purple | 0.173 | 1.000 | 0.534 | 0.155 | 1.000 | 0.487 | −0.012 | 1.000 | 0.770 | |
Green | Purple | 0.125 | 1.000 | 0.574 | −0.172 | 1.000 | 0.446 | −0.022 | 1.000 | 0.772 |
Independent Samples t-Test and Mann–Whitney | Reading Comprehension (Level over 22) | Written Expression (Level over 12) | Mathematical Competence (Level over 13) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Statistic | df | p | Effect Size | Statistic | df | P | Effect Size | Statistic | df | p | Effect Size | |
Day 1A | Student | −2.127 | 13 | 0.053 a | −1.165 | 0.233 | 13 | 0.819 | 0.128 | −0.663 | 16 | 0.517 | −0.331 |
Natural light | M-W | 15.000 | 0.235 a | −0.400 | 28.500 | 0.710 | 0.140 | 28.500 | 0.509 | −0.208 | |||
Day 2A | Student | −2.088 | 14 | 0.056 a | −1.206 | 0.000 | 14 | 1.000 | 0.000 | 0.075 | 14 | 0.941 | 0.578 |
Orange light | M-W | 12.500 | 0.161 a | −0.479 | 23.500 | 1.000 | −0.021 | 24.000 | 1.000 | 0.331 | |||
Day 3A | Student | −2.063 | 15 | 0.057 a | −1.098 | −1.359 | 15 | 0.194 | −0.723 | −0.643 | 14 | 0.531 | −0.347 |
Green light | M-W | 22.000 | 0.406 a | −0.267 | 20.000 | 0.311 | −0.333 | 19.000 | 0.356 | −0.309 | |||
Day 4A | Student | 0.494 | 16 | 0.628 | 0.247 | 0.668 | 14 | 0.515 | 0.360 | −2.794 | 13 | 0.015 | −1.804 |
Purple light | M-W | 39.500 | 0.774 | 0.097 | 33.000 | 0.568 | 0.200 | 4.000 | 0.050 | −0.778 | |||
Day 1B | Student | −2.658 | 36 | 0.012 | −0.864 | −2.187 | 35 | 0.035 | −0.722 | −1.717 | 36 | 0.095 | −0.558 |
Natural light | M-W | 101.500 | 0.022 | −0.436 | 100.000 | 0.033 | −0.412 | 123.500 | 0.097 | −0.314 | |||
Day 2B | Student | −1.461 | 37 | 0.152 | −0.468 | 1.233 | 37 | 0.225 | 0.395 | −0.959 | 37 | 0.344 | −0.307 |
Green light | M-W | 157.000 | 0.358 | −0.174 | 217.000 | 0.451 | 0.142 | 153.500 | 0.306 | −0.192 | |||
Day 3B | Student | −1.705 | 37 | 0.097 | −0.546 | −0.090 | 37 | 0.928 | −0.029 | 0.088 | 37 | 0.930 | 0.028 |
Purple light | M-W | 126.500 | 0.075 | −0.334 | 207.000 | 0.640 | 0.089 | 194.500 | 0.910 | 0.024 | |||
Day 4B | Student | −0.539 | 37 | 0.593 | −0.173 | 1.245 | 37 | 0.221 | 0.399 | −0.326 | 37 | 0.746 | −0.104 |
Orange light | M-W | 174.000 | 0.661 | −0.084 | 247.000 | 0.108 | 0.300 | 183.000 | 0.853 | −0.037 |
Cognitive Variables and Dimensions | Natural Light | Orange Light | Green Light | Purple Light |
---|---|---|---|---|
Energy | median 7.625 | median 9.375 | median 8.500 | median 9.000 |
mean 7.537 | mean 8.634 | mean 8.124 | mean 8.430 | |
n = 60 | n = 56 | n = 59 | n = 57 | |
Satisfaction | median 8.000 | median 9.000 | median 9.000 | median 9.000 |
mean 7.771 | mean 8.500 | mean 8.460 | mean 8.421 | |
n = 60 | n = 56 | n = 59 | n = 57 | |
Feeling | median 3.875 | median 4.000 | median 4.000 | median 4.000 |
mean 3.549 | mean 3.942 | mean 3.768 | mean 3.934 | |
n = 60 | n = 59 | n = 59 | n = 57 |
Cognitive Variables and Dimensions | Natural Light | Natural2 Light | Natural3 Light | Natural4 Light |
---|---|---|---|---|
Energy | median 8.000 | median 8.000 | median 8.500 | median 8.625 |
mean 7.806 | mean 7.534 | mean 8.138 | mean 8.102 | |
n = 63 | n = 67 | n = 65 | n = 64 | |
Satisfaction | median 8.000 | median 8.000 | median 8.000 | median 8.000 |
mean 7.853 | mean 7.437 | mean 7.904 | mean 7.898 | |
n = 63 | n = 67 | n = 65 | n = 64 | |
Feeling | median 4.000 | median 3.500 | median 4.000 | median 4.000 |
mean 3.593 | mean 3.531 | mean 3.821 | mean 3.722 | |
n = 63 | n = 65 | n = 63 | n = 62 |
Kruskal–Wallis Test | Energy | Satisfaction | Feeling | ||||||
---|---|---|---|---|---|---|---|---|---|
Factor | statics | df | p | statics | df | p | statics | df | p |
Coloured light scenarios | 14.790 | 3 | 0.002 | 6.713 | 3 | 0.082 | 11.475 | 3 | 0.009 |
Post Hoc Comparisons | Energy | Satisfaction | Feeling | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | Cohen’s d | pbonf | Dunn’s Post Hoc p | ||
Natural | Orange | −0.581 | 0.012 | <0.001 | −0.410 | 0.169 | 0.035 | −0.465 | 0.079 | 0.003 |
Green | −0.311 | 0.547 | 0.128 | −0.388 | 0.212 | 0.065 | −0.260 | 0.949 | 0.062 | |
Purple | −0.473 | 0.067 | 0.002 | −0.366 | 0.294 | 0.023 | −0.456 | 0.087 | 0.004 | |
Orange | Green | 0.270 | 0.894 | 0.070 | 0.022 | 1.000 | 0.773 | 0.205 | 1.000 | 0.254 |
Purple | 0.108 | 1.000 | 0.874 | 0.044 | 1.000 | 0.881 | 0.009 | 1.000 | 0.881 | |
Green | Purple | −0.162 | 1.000 | 0.097 | 0.022 | 1.000 | 0.659 | −0.196 | 1.000 | 0.320 |
Independent Samples t-Test and Mann–Whitney | Satisfaction | Energy | Feeling | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Statistic | df | p | Effect Size | Statistic | df | p | Effect Size | Statistic | df | p | Effect Size | |
Day 1A Natural light | Student M-W | −0.582 404.000 | 62 | 0.563 0.497 | −0.155 −0.105 | −1.101 401.500 | 62 | 0.563 0.497 | −0.293 −0.111 | 0.598 491.500 | 62 | 0.552 0.543 | 0.159 0.000 |
Day 2A Orange light | Student M-W | −0.901 360.000 | 62 | 0.371 0.548 | −0.255 −0.099 | −0.688 359.000 | 62 | 0.494 0.538 | −0.195 −0.101 | −1.502 284.000 | 60 | 0.138 0.103 | −0.427 −0.258 |
Day 3A Green light | Student M-W | −0.604 419.500 | 63 | 0.548 0.666 | −0.162 −0.068 | 1.294 538.000 | 63 | 0.200 0.207 | 0.348 0.196 | −0.118 403.000 | 61 | 0.906 0.668 | −0.032 −0.063 |
Day 4A Purple light | Student M-W | −0.165 389.000 | 60 | 0.870 0.919 | −0.046 −0.018 | −0.302 367.000 | 60 | 0.764 0.653 | −0.084 −0.073 | −0.215 360.000 | 58 | 0.831 0.760 | −0.061 −0.048 |
Day 1B Natural light | Student M-W | −2.397 127.000 | 37 | 0.022 0.076 | −0.768 −0.332 | −1.662 128.000 | 37 | 0.105 0.083 | −0.532 −0.326 | −1.251 144.000 | 37 | 0.219 0.192 | −0.401 −0.242 |
Day 2B Green light | Student M-W | 0.584 201.000 | 37 | 0.563 0.765 | 0.187 0.058 | 0.944 226.000 | 37 | 0.351 0.315 | 0.302 0.189 | −0.262 173.000 | 37 | 0.794 0.640 | −0.084 −0.089 |
Day 3B Purple light | Student M-W | 0.445 237.000 | 37 | 0.659 0.168 | 0.143 0.247 | 0.536 230.000 | 37 | 0.595 0.245 | 0.172 0.211 | 0.052 198.500 | 37 | 0.959 0.818 | 0.017 0.045 |
Day 4B Orange light | Student M-W | 1.292 233.500 | 37 | 0.204 0.220 | 0.414 0.229 | 1.504 234.500 | 37 | 0.141 0.209 | 0.482 0.234 | 1.088 222.000 | 37 | 0.284 0.369 | 0.325 0.185 |
Extreme Values of the Dependent Variables (Dimensions Included) | ||||
---|---|---|---|---|
Maximum Value | Minimum Value | |||
Mean | Median | Mean | Median | |
Net Attention | 45.552 | 48.000 | 35.857 | 35.500 |
(level over 60) | Natural light4 | Natural light4 | Natural light1 | Natural light1 |
(control group) | (control group) | (experimental group) | (experimental group) | |
Impulsivity Control (level over 100) | 91.974 | 96.200 | 87.406 | 90.100 |
Purple light | Natural light4 | Natural light1 | Natural light | |
(experimental group) | (control group) | (control group) | (experimental group) | |
Figurative Creativity | 202.095 | 211.000 | 125.633 | 131.000 |
Green light | Purple light | Natural light1 | Natural light1 | |
(experimental group) | (experimental group) | (control group) | (control group) | |
Reading comprehension (level over 22) | 19.750 | 21.000 | 16.488 | 17.000 |
Natural light2 | Natural light3 | Natural light | Natural light | |
(control group) | (control group) | (experimental group) | (experimental group) | |
Written expression (level over 12) | 9.634 | 10.000 | 6.268 | 7.000 |
Orange light | Orange-green-purple light | Natural light | Natural light | |
(experimental group) | (experimental group) | (experimental group) | (experimental group) | |
Mathematical competence | 9.405 | 10.000 | 7.765 | 8.000 |
(level over 13) | Purple light | Orange-purple light | Natural light | Natural light |
(experimental group) | (experimental group) | (experimental group) | (experimental group) | |
Energy | 8.634 | 9.375 | 7.534 | 7.625 |
Orange light | Orange light | Natural light2 | Natural light | |
(experimental group) | (experimental group) | (control group) | (experimental group) | |
Satisfaction | 8.500 | 9.000 | 7.437 | 8.000 |
Orange light | Orange-green-purple light | Natural light2 | All natural light | |
(experimental group) | (experimental group) | (control group) | (experimental and control groups) | |
Feeling | 3.942 | 4.000 Orange-green-purple light (experimental group) Natural light 1-3-4 (control group) | 3.549 | 3.500 |
Orange light | Natural light | Natural light2 | ||
(experimental group) | (experimental group) | (control group) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiles-Rodríguez, J.; Palau, R.; Mateo-Sanz, J.M. How Artificial Intelligence-Assisted Colour Lighting Can Improve Learning: Evidence from Recent Classrooms Studies. Appl. Sci. 2025, 15, 3657. https://doi.org/10.3390/app15073657
Quiles-Rodríguez J, Palau R, Mateo-Sanz JM. How Artificial Intelligence-Assisted Colour Lighting Can Improve Learning: Evidence from Recent Classrooms Studies. Applied Sciences. 2025; 15(7):3657. https://doi.org/10.3390/app15073657
Chicago/Turabian StyleQuiles-Rodríguez, José, Ramon Palau, and Josep M. Mateo-Sanz. 2025. "How Artificial Intelligence-Assisted Colour Lighting Can Improve Learning: Evidence from Recent Classrooms Studies" Applied Sciences 15, no. 7: 3657. https://doi.org/10.3390/app15073657
APA StyleQuiles-Rodríguez, J., Palau, R., & Mateo-Sanz, J. M. (2025). How Artificial Intelligence-Assisted Colour Lighting Can Improve Learning: Evidence from Recent Classrooms Studies. Applied Sciences, 15(7), 3657. https://doi.org/10.3390/app15073657