Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fine-grained turbidite deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9011 KiB  
Article
Evolution of Sedimentary Facies of the Ordovician-Silurian Transition and Its Response to the Guangxi Movement in Southern Sichuan Basin, China
by Guoyou Fu, Zhensheng Shi, Meng Zhao, Qun Zhao, Tianqi Zhou, Ling Qi and Pengfei Wang
Appl. Sci. 2025, 15(7), 3559; https://doi.org/10.3390/app15073559 - 25 Mar 2025
Viewed by 395
Abstract
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on [...] Read more.
The formation and distribution of sedimentary facies of the Wufeng Formation reflect the evolution of Guangxi Movement and significantly impact shale reservoir quality in southern Sichuan Basin, China. This study characterizes the sedimentary facies and their evolution of Ordovician-Silurian transition shale based on detailed core descriptions, full-scale imaging of large slabs, and field emission scanning electron microscopy of argon-ion polished sections. There only exist fine-grained turbidite deposits, hemipelagic deposits, and shallow shoal deposits for the Wufeng shale. Fine-grained turbidite deposits consist primarily of clastic quartz and clay minerals and can be divided into nine subdivisions. Hemipelagic deposits are mainly composed of quartz, detrital carbonate, and clay minerals. Shallow shoal deposits are dominated by clay minerals, dolomite, and calcite, with carbonates primarily of autochthonous origin. The fine-grained turbidite deposits predominantly occur within the Dicellograptus complanatus and D. complexus graptolite biozones, while hemipelagic deposits are confined to the Paraorthograptus pacificus biozone, and shallow shoal deposits are restricted to the Metabolograptus extraordinarius biozone. Formation and distribution of the three sedimentary facies are closely related to the Guangxi Movement. During the strong tectonic compression stage, sufficient sediment supply and intensive volcanic eruption favored the formation of the fine-grained turbidite deposits. Along with waning tectonic activity and reduced terrestrial input, hemipelagic deposits formed and then shallow shoal deposits. Sedimentary facies exert first-order controls on shale reservoir quality, with hemipelagic deposits exhibiting optimal reservoir characteristics. Laboratory analyses reveal that hemipelagic facies possess the highest porosity (3.34–4.15%) and TOC content (2.91–4.10%) due to biogenic quartz enrichment and minimal allochthonous dilution, whereas fine-grained turbidites show degraded properties (porosity: 1.58–3.81%; TOC: 0.15–2.6%) from high-energy siliciclastic influx. Shallow shoal deposits display intermediate values (porosity: 3.92%; TOC: 3.25%), constrained by carbonate cementation. Full article
Show Figures

Figure 1

14 pages, 22270 KiB  
Article
Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea
by Avraam Zelilidis, Nicolina Bourli, Konstantinos Andriopoulos, Eleftherios Georgoulas, Savvas Peridis, Dimitrios Asimakopoulos and Angelos G. Maravelis
J. Mar. Sci. Eng. 2023, 11(2), 271; https://doi.org/10.3390/jmse11020271 - 25 Jan 2023
Cited by 4 | Viewed by 2146
Abstract
The new approach on depositional conditions of the Messinian evaporites in Zakynthos Island indicates that the evaporites in the Kalamaki and Ag. Sostis areas were redeposited during the Early Pliocene. They accumulated either as turbiditic evaporites or as slumped blocks, as a response [...] Read more.
The new approach on depositional conditions of the Messinian evaporites in Zakynthos Island indicates that the evaporites in the Kalamaki and Ag. Sostis areas were redeposited during the Early Pliocene. They accumulated either as turbiditic evaporites or as slumped blocks, as a response to Kalamaki thrust activity. Thrust activity developed a narrow and restricted Kalamaki foreland basin with the uplifted orogenic wedge consisting of Messinian evaporites. These evaporites eroded and redeposited in the foreland basin as submarine fans with turbiditic currents or slumped blocks (olistholiths) that consist of Messinian evaporites. These conditions occurred just before the inundation of the Mediterranean, during or prior to the Early Pliocene (Zanclean). Following the re-sedimentation of the Messinian evaporites, the inundation of the Mediterranean produced the “Lago Mare” fine-grained sediments that rest unconformably over the resedimented evaporites. The “Trubi” limestones were deposited later. It is critical to understand the origin of the “Messinian” Evaporites because they can serve as an effective seal rock for the oil and gas industry. It is thus important to evaluate their thickness and distribution into the SE Mediterranean Sea. Full article
(This article belongs to the Special Issue Recent Advances in Sedimentology)
Show Figures

Figure 1

38 pages, 17426 KiB  
Article
Integrated Morpho-Bathymetric, Seismic-Stratigraphic, and Sedimentological Data on the Dohrn Canyon (Naples Bay, Southern Tyrrhenian Sea): Relationships with Volcanism and Tectonics
by Gemma Aiello, Marina Iorio, Flavia Molisso and Marco Sacchi
Geosciences 2020, 10(8), 319; https://doi.org/10.3390/geosciences10080319 - 17 Aug 2020
Cited by 22 | Viewed by 5760
Abstract
Submarine canyons are geomorphologic lineaments engraving the slope/outer shelf of continental margins. These features are often associated with significant geologic hazard when they develop close to densely populated coastal zones. The seafloor of Naples Bay is deeply cut by two incisions characterized by [...] Read more.
Submarine canyons are geomorphologic lineaments engraving the slope/outer shelf of continental margins. These features are often associated with significant geologic hazard when they develop close to densely populated coastal zones. The seafloor of Naples Bay is deeply cut by two incisions characterized by a dense network of gullies, namely the Dohrn and Magnaghi canyons, which develop from the shelf break of the Campania margin, down to the peripheral rise of the Eastern Tyrrhenian bathyal plain. Seismic-stratigraphic interpretation of multichannel seismic reflection profiles has shown that quaternary tectonics and recent to active volcanism have exerted a significant control on the morphological evolution and source-to sink depositional processes of the Dohrn and Magnaghi submarine canyons. The Dohrn canyon is characterized by relatively steep walls hundreds of meters high, which incise a Middle-Late Pleistocene prograding wedge, formed by clastic and volcaniclastic deposits associated with the paleo-Sarno river system during the Mid-Late Pleistocene. The formation of the Dohrn canyon predates the onset of the volcanic eruption of the Neapolitan Yellow Tuff (NYT), an ignimbrite deposit of ca. 15 ka that represents the bedrock on which the town of Napoli is built. Integrated stratigraphic analysis of high-resolution seismic profiles and marine gravity core data (C74_12) collected along the flanks of the eastern bifurcation of the head of Dohrn Canyon suggests that depositional processes along the canyon flanks are dominated by gravity flows (e.g., fine-grained turbidites, debris flows) and sediment mass transport associated with slope instability and failure. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Back to TopTop