Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain)
Abstract
:1. Introduction
2. Caves Studied: Tourist Visit Regimen
3. Methodology
3.1. Environmental Control System
- Datalogger Tinytag TGP 4505 (measuring ranges −25 + 85 °C and 0–100% RH) with external combined temperature and humidity (RH) probe: Thermistor 10 K NTC (accuracy: 0.35 °C, with resolution of 0.01 °C) and capacitive sensor (accuracy: ± 3.0% RH at 25 °C and resolution < 0.3% RH). Recording rate of 10 min.
- SeaBird (SEB56) high-performance Temperature Recorder Probe: accuracy: ±0.002 °C (−5 to +35 °C); temperature range: −5 to +45 °C; resolution: 0.0001 °C. Recording rate: 5 min.
- CO2 monitor, Goodsell Systems CO2log, equipped with an NDIR sensor with a measuring range of 400 ppm −10,000 ppm and accuracy +/− 30 ppm. Logging every 30 min.
- AlphaE (Bertin Instruments, Montigny-le-Bretonneux, France) radon (222Rn) gas logger monitor, equipped with a silicon diode diffusion chamber detector. Measuring range: 20 Bq/m3 to 10 MBq/m3. Detector sensitivity: 3 cph at 100 Bq/m3. Recording every 1 h.
3.2. Assessment of the Impacts Generated by the Influx of Visitors on Air Temperature and CO2 Concentration
4. Results
4.1. Temporal Evolution of Cave Air Temperature
4.2. Gaseous Composition of Caver Air
4.3. Criteria for Preliminary Evaluation of the Microclimatic Destabilisation Generated by Daily Visits
- Reference threshold: The value of the third quartile (Q3 = 75%) of the data set of variations in the control parameter does not exceed the same statistic calculated for the variations in natural regime (without visits). Alternatively, at least, it does not exceed the maximum daily variation in this parameter (maximum non-atypical, i.e., non-outlier) in the periods in which the cave is closed to tourist visits.
- Maximum threshold: The interquartile range of the variations in the control parameter does not lie in its entirety above the third quartile (Q3) or the maximum daily variation (maximum non-atypical, i.e., non-outlier) of the data set of variations in the control parameter in the natural regime (without visits). The interquartile range represents the middle 50% of the data, that is, it shows the distance between the first quartile and the third quartile (Q3–Q1), thus representing the most frequent variations in the control parameter considered.
4.3.1. Microclimate Disturbances by Visitors in El Castillo Cave
4.3.2. Microclimate Disturbances by Visitors in Covalanas Cave
5. Discussion: Optimal Ranges of Daily Visits in Each Cavity
6. Conclusions: Effective Implementation of Corrective Measures
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillieson, D. Caves: Processes, Development, Management; Blackwell: Oxford, UK, 1996; p. 324. [Google Scholar]
- Debevec, V.; Rakovec, J. Impact of visits on the microclimates of caves experimental evidence from Skocjan caves. Acta Carsologica 2021, 50, 269–290. [Google Scholar]
- Fernandez-Cortes, A.; Cuezva, S.; Sanchez-Moral, S.; Cañaveras, J.C.; Porca, E.; Jurado, V.; Martin-Sanchez, P.M.; Saiz-Jimenez, C. Detection of human-induced environmental disturbances in a show cave. Environ. Sci. Pollut. Res. 2011, 18, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Jimenez, C.; Cuezva, S.; Jurado, V.; Fernandez-Cortes, A.; Porca, E.; Benavente, D.; Cañaveras, J.C.; Sanchez-Moral, S. Paleolithic art in peril: Policy and science collide at Altamira Cave. Science 2011, 334, 42–43. [Google Scholar]
- Sanchez-Moral, S.; Jurado, V.; Fernandez-Cortes, A.; Cuezva, S.; Martin-Pozas, T.; Gonzalez-Pimentel, J.L.; Ontañon, R.; Saiz-Jimenez, C. Environment-driven control of fungi in subterranean ecosystems: The case of La Garma Cave (northern Spain). Int. Microbiol. 2021, 24, 573–591. [Google Scholar] [CrossRef]
- Bourges, F.; Genthon, P.; Genty, D.; Lorblanchet, M.; Mauduit, E.; D’Hulst, D. Conservation of prehistoric caves and stability of their inner climate: Lessons from Chauvet and other French caves. Sci. Total Environ. 2014, 493, 79–91. [Google Scholar]
- De Freitas, C.R. The role and importance of cave microclimate in the sustainable use and management of show caves. Acta Carsologica 2010, 39, 477–489. [Google Scholar]
- Calaforra, J.M.; Fernandez-Cortes, A.; Sanchez-Martos, F.; Gisbert, J.; Pulido-Bosch, A. Environmental control for determining human impact and permanent visitors capacity in a potential show cave before tourist use. Environ. Conserv. 2003, 30, 163–167. [Google Scholar]
- Cigna, A.; Forti, P. The environmental impact assessment of a tourist cave. In Cave Tourism: Proceedings of International Symposium on the 170th Anniversary of Postojnska Jama; Kranjc, A., Ed.; Karst Research Institute ZRC-SAZU: Postojna, Slovenia, 1989; pp. 29–38. [Google Scholar]
- Guirado, E.; Ramos-Lopez, D.; Maldonado, A.D.; Moreno-Balcazar, J.J.; Calaforra, J.M. Modeling carbon dioxide for show cave conservation. J. Nat. Conserv. 2019, 49, 76–84. [Google Scholar] [CrossRef]
- Hoyos, M.; Soler, V.; Cañaveras, J.C.; Sanchez-Moral, S.; Sanz-Rubio, E. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar]
- Lobo, H.A.S. Tourist carrying capacity of Santana cave (PETAR-SP, Brazil): A new method based on a critical atmospheric parameter. Tour. Manag. Perspect. 2015, 16, 67–75. [Google Scholar]
- Mangin, A.; Bourges, F.; D’Hulst, D. La conservation des grottes ornées: Un problème de stabilité d’un système naturel (l’exemple de la grotte préhistorique de Gargas, Pyrénées francaises). Comptes Rendús L’académie Sci. Paris Sci. Terre Planètes 1999, 328, 295–301. [Google Scholar]
- Piano, E.; Mammola, S.; Nicolisi, G.; Isaia, M. Advancing tourism sustainability in show caves. Cell Rep. Sustain. 2024, 1, 100057. [Google Scholar]
- Bontemps, Z.; Moënne-Loccoz, Y.; Hugoni, M. Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves. Appl. Sci. 2024, 14, 9438. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Jurado, V.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Ontañon, R.; Arias, P.; Cañaveras, J.C.; Sanchez-Moral, S.; et al. Microclimate, airborne particles, and microbiological monitoring protocol for conservation of rock-art caves: The case of the world-heritage site La Garma cave (Spain). J. Environ. Manag. 2024, 351, 119762. [Google Scholar]
- Mulec, J. Human impact on underground cultural and natural heritage sites, biological parameters of monitoring and remediation actions forinsensitive surfaces: Case of Slovenian show caves. J. Nat. Conserv. 2014, 22, 132–141. [Google Scholar]
- Foyo, A.; Sanchez, M.A.; Tomillo, C.; Iriarte, E. El Castillo Mountain prehistoric caves (Cantabria, North of Spain). Structural geology, karstic development and prehistoric art manifestations. In Proceedings of the 3rd IASME/WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES’09), Mathematics and Computers in Science and Engineering A Series of Reference Books and Textbooks; World Heritage, UNESCO 2008; Trilling, L., Perkins, D., Dionysios, D., Perlovsky, L., Davey, K., Landgrebe, D., Marino, M.A., Russell, D.L., Collicott, S.H., Ceccarelli, M., et al., Eds.; World Scientific and Engineering Academy and Society (WSEAS) Press: Wisconsin, WI, USA, 2009; pp. 148–152. [Google Scholar]
- Bayarri, V.; Castillo, E.; Ripoll, S.; Sebastian, M.A. Control of Laser Scanner Trilateration Networks for Accurate Georeferencing of Caves: Application to El Castillo Cave (Spain). Sustainability 2021, 13, 13526. [Google Scholar] [CrossRef]
- Sakamoto, T.; Pettitt, P.; Ontañon-Peredo, R. Upper Palaeolithic Installation Art: Topography, Distortion, Animation and Participation in the Production and Experience of Cantabrian Cave Art. Camb. Archaeol. J. 2020, 30, 665–688. [Google Scholar]
- Sakamoto, T. Cave Art as Installation Art: Analysis of the Human-Art-Wall Triad in Three Cantabrian Caves, and Embedded Interactivity in the Image-Making and Image-Viewing Process. Ph.D. Thesis, Durham University, Durham, UK, 2019. Available online: https://etheses.dur.ac.uk/13196/1/PhD_Thesis_pdf.pdf?DDD6+ (accessed on 19 March 2025).
- Ontañon-Peredo, R.; Bayarri, V.; Herrera, J.; Rodriguez, R. The conservation of prehistoric caves in Cantabria, Spain. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press/Taylor & Francis: London, UK, 2014; pp. 185–192. [Google Scholar]
- Palacio-Perez, E. The UNESCO World Heritage List in a Globalized World: The Case of the Paleolithic Caves of Northern Spain (1985–2008). In Deep-Time Images in the Age of Globalization. Rock Art in the 21st Century; Abadía, Ó.M., Conkey, M.W., McDonald, J., Eds.; Springer: Cham, Switzerland, 2024; pp. 207–217. [Google Scholar]
- Faimon, J.; Stelcl, J.; Sas, D. Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Cisarska Cave (Moravian Karst, Czech Republic). Sci. Total Environ. 2006, 369, 231–245. [Google Scholar]
- Lario, J.; Sanchez-Moral, S.; Soler, V.; Cañaveras, J.C.; Cuezva, S. Caracterización microambiental de la Cueva de Pozalagua (Vizcaya): Aplicación a la gestión y protección de cavidades turísticas. Estud. Geológicos. 2005, 61, 41–59. [Google Scholar]
- Lario, J.; Soler, V. Microclimate monitoring of Pozalagua cave (Vizcaya, Spain): Application to management and protection of show caves. J. Cave Karst Stud. 2010, 72, 169–180. [Google Scholar]
- Sanchez-Moral, S.; Soler, V.; Cañaveras, J.C.; Sanz, E.; Van Grieken, R.; Gysells, K. Inorganic deterioration affecting Altamira Cave: Quantitative approach to wall-corrosion (solutional etching) processes induced by visitor. Sci. Total Environ. 1999, 243, 67–84. [Google Scholar]
- Toit, S.H.C.; Steyn, A.G.W.; Stumpf, R.H. Graphical Exploratory Data Analysis; Springer Texts in Statistics; Springer: New York, NY, USA, 1986; p. 314. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Banbury, K. Build up and diffusion of carbon dioxide in cave air in relation to visitor numbers at the Glowworm Cave, New Zealand, in Cave Management in Australasia XIII. In Proceedings of the Thirteenth Australasian Conference on Cave and Karst Management, Carlton South, Victoria; Australasian Cave and Karst Management Association: Mount Gambier, Australia, 1999; pp. 84–89. [Google Scholar]
- Gillieson, D.S. Management of Caves. In Karst Management; van Beynen, P., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Huppert, G.; Burri, E.; Forti, P.; Cigna, A. Effects of tourist development on caves and karst. In Karst Terrains: Environmental Changes and Human Impact: Cremlingen-Destedt; Williams, P.W., Ed.; Catena: Dresden, Germany, 1993; Supplement 25; pp. 251–268. [Google Scholar]
- Kermode, L.O. Cave corrosion by tourists. In Cave Management in Australia 3: Proceedings of the 3rd Australian Conference on Cave Tourism and Management, Mt. Gambier, South Australia; Australasian Cave and Karst Management Association: Carlton South, Australia, 1979; pp. 97–104. [Google Scholar]
- Pulido-Bosch, A.; Martín-Rosales, W.; Lopez-Chicano, M.; Rodriguez-Navarro, C.M.; Vallejos, A. Human impact in a tourist karstic cave (Aracena, Spain). Environ. Geol. 1997, 31, 142–149. [Google Scholar]
- Russel, M.J.; MacLean, V.L. Management issues in a Tasmanian tourist cave: Potential microclimatic impacts of cave modifications. J. Environ. Manag. 2008, 87, 474–483. [Google Scholar]
- Cigna, A.A. Environmental management of tourist caves. The examples of Grotta di Castellana and Grotta Grande del Vento, Italy. Environ. Geol. 1993, 21, 173–180. [Google Scholar]
- Fernandez-Cortes, A.; Calaforra, J.M.; Sanchez-Martos, F. Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain). Atmos. Environ. 2006, 40, 7378–7394. [Google Scholar]
- Lobo, H.A.; Boggiani, P.C.; Perinotto, J.A. Speleoclimate dynamics in Santana Cave (PETAR, Sao Paulo State, Brazil): General caracterization and implications for tourist management. Int. J. Speleol. 2015, 44, 61–73. [Google Scholar]
- Sebela, S.; Prelovsek, M.; Janez, T. Impact of Peak Period Visits on the Postojna Cave (Slovenia) Microclimate. Theor. Appl. Climatol. 2013, 111, 51–64. [Google Scholar]
- Buonincontri, P.; Micera, R.; Murillo-Romero, M.; Pianese, T. Where Does Sustainability Stand in Underground Tourism? A Literature Review. Sustainability 2021, 13, 12745. [Google Scholar] [CrossRef]
- Lobo, H.A.S.; Trajano, E.; Marinho, M.D.; Bichuette, M.E.; Scaleante, J.A.B.; Scaleante, O.A.F.; Rocha, B.N.; Laterza, F.V. Projection of tourist scenarios onto fragility maps: Framework for determination of provisional tourist carrying capacity in a Brazilian show cave. Tour. Manag. 2013, 35, 234–243. [Google Scholar]
- Zhang, S.; Chen, A. Do Different Queue Formations Influence the Overestimation of Tourism Carrying Capacity? Sustainability 2024, 16, 11047. [Google Scholar] [CrossRef]
- Geneste, J.M.; Mauriac, M. The conservation of Lascaux Cave, France. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press/Taylor & Francis: London, UK, 2014; pp. 165–172. [Google Scholar]
- Cuezva, S.; Jurado, V.; Fernandez-Cortes, A.; Garcia-Anton, E.; Rogerio-Candelera, M.A.; Ariño, X.; Benavente, D.; Cañaveras, J.C.; Saiz-Jimenez, C.; Sanchez-Moral, S. Scientific data suggest Altamira Cave should remain closed. In Microbial Life of Cave Systems. Life in Extreme Environments; Engel, A.S., Ed.; De Gruyter: Boston, MA, USA, 2015; Volume 3, pp. 303–320. [Google Scholar]
- Bayarri, V.; Prada, A.; Garcia, F.; De Las Heras, C.; Fatas, P. Remote Sensing and Environmental Monitoring Analysis of Pigment Migrations in Cave of Altamira’s Prehistoric Paintings. Remote Sens. 2024, 16, 2099. [Google Scholar] [CrossRef]
- Prada, A.; Bayarri, V. Methodology for the Monitoring and Control of the Alterations Related to Biodeterioration and Physical-Chemical Processes Produced on the Paintings on the Ceiling of the Polychrome Hall at Altamira. Conservation 2024, 4, 703–730. [Google Scholar] [CrossRef]
- Geneste, J.M.; Bardisa, M. The conservation of Chauvet Cave, France. The conservation, research organization and the diffusion of knowledge of a cave inaccessible to the public. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press/Taylor & Francis: London, UK, 2014; pp. 173–183. [Google Scholar]
- Jurado, V.; Gonzalez-Pimentel, J.L.; Fernandez-Cortes, A.; Martin-Pozas, T.; Ontañon-Peredo, R.; Palacio-Perez, E.; Hermosin, B.; Sanchez-Moral, S.; Saiz-Jimenez, C. Early detection of phototrophic bioflms in the polychrome panel, El Castillo cave, Spain. Appl. Biosci. 2022, 1, 40–63. [Google Scholar]
2020 | 2021 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Mean | Max. | Total | Mean | Max. | Total | Men. | Max. | |
January | - | - | - | 493 | 21 | 51 | 999 | 40 | 114 |
February | 2101 | 96 | 168 | 756 | 33 | 84 | 1679 | 67 | 128 |
March | 886 | 81 | 124 | 887 | 35 | 114 | 2441 | 84 | 180 |
April | 0 | 0 | 0 | 1529 | 59 | 111 | 4148 | 148 | 228 |
May | 53 | 11 | 20 | 1382 | 53 | 113 | 3861 | 133 | 236 |
June | 879 | 37 | 80 | 2195 | 84 | 129 | 4122 | 159 | 340 |
July | 2168 | 80 | 93 | 3212 | 115 | 136 | 5579 | 192 | 272 |
August | 2681 | 103 | 124 | 3183 | 118 | 145 | 5451 | 202 | 233 |
September | 2546 | 98 | 126 | 3022 | 104 | 186 | 4156 | 154 | 221 |
October | 1621 | 60 | 115 | 2645 | 91 | 198 | 3679 | 131 | 197 |
November | 184 | 14 | 67 | 2101 | 78 | 191 | 2833 | 105 | 202 |
December | 419 | 28 | 70 | 1861 | 72 | 217 | 2250 | 98 | 204 |
Annual | 13,538 | 55 | 90 | 23,266 | 72 | 140 | 41,198 | 126 | 213 |
2020 | 2021 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Mean | Max. | Total | Mean | Max. | Total | Men. | Max. | |
January | - | - | - | 134 | 9 | 18 | 337 | 13 | 31 |
February | 436 | 21 | 50 | 169 | 12 | 25 | 337 | 16 | 32 |
March | 173 | 19 | 39 | 252 | 13 | 27 | 409 | 17 | 46 |
April | 0 | 0 | 0 | 386 | 15 | 29 | 794 | 31 | 48 |
May | 26 | 5 | 9 | 437 | 16 | 29 | 651 | 27 | 47 |
June | 179 | 10 | 17 | 447 | 19 | 25 | 718 | 30 | 43 |
July | 430 | 16 | 22 | 532 | 21 | 28 | 961 | 38 | 90 |
August | 341 | 16 | 23 | 534 | 23 | 27 | 947 | 38 | 43 |
September | 287 | 18 | 25 | 589 | 25 | 45 | 771 | 32 | 46 |
October | 485 | 16 | 29 | 684 | 25 | 40 | 733 | 28 | 51 |
November | 77 | 7 | 25 | 538 | 23 | 42 | 540 | 23 | 82 |
December | 94 | 9 | 18 | 489 | 24 | 42 | 563 | 23 | 48 |
Annual | 2528 | 12 | 23 | 5191 | 19 | 31 | 7761 | 26 | 51 |
Cave | Monthly Average | Microclimate Impacts | Maximum Threshold | Microclimate Impacts | ||
---|---|---|---|---|---|---|
Visitors/Day | ΔT (°C) | ΔCO2 (ppm) | Visitors/Day | ΔT (°C) | ΔCO2 (ppm) | |
El Castillo | ≤60 | ≤0.10 | ≤110 | 130 | ≤0.16 | ≤180 |
Covalanas | ≤15 | ≤0.11 | ≤220 | 25 | ≤0.15 | ≤350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Cortes, A.; Palacio-Perez, E.; Martin-Pozas, T.; Cuezva, S.; Ontañon, R.; Lario, J.; Sanchez-Moral, S. Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain). Appl. Sci. 2025, 15, 3484. https://doi.org/10.3390/app15073484
Fernandez-Cortes A, Palacio-Perez E, Martin-Pozas T, Cuezva S, Ontañon R, Lario J, Sanchez-Moral S. Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain). Applied Sciences. 2025; 15(7):3484. https://doi.org/10.3390/app15073484
Chicago/Turabian StyleFernandez-Cortes, Angel, Eduardo Palacio-Perez, Tamara Martin-Pozas, Soledad Cuezva, Roberto Ontañon, Javier Lario, and Sergio Sanchez-Moral. 2025. "Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain)" Applied Sciences 15, no. 7: 3484. https://doi.org/10.3390/app15073484
APA StyleFernandez-Cortes, A., Palacio-Perez, E., Martin-Pozas, T., Cuezva, S., Ontañon, R., Lario, J., & Sanchez-Moral, S. (2025). Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain). Applied Sciences, 15(7), 3484. https://doi.org/10.3390/app15073484