Capabilities-Based Approach to Parameters Selection for Manipulators of Man-Portable Unmanned Ground Vehicles
Abstract
:1. Introduction
2. Process of Manipulator Development
3. Literature Review on Manipulator Design and Optimization Methods
3.1. Size Optimization
3.2. Topology Optimization
3.3. Topology Optimization and Detailed Analysis of Manipulator Loads
4. Specificity of Portable Robot Manipulators
5. Method for Designing Manipulators for Man-Portable UGVs
5.1. Conceptual Design
5.2. Basic Parameters Selection
5.3. Load Cases Definition
- , —position limits at joint i
- —torque at joint i
- —maximum torque at joint i
- —radial torque at joint 1
- —maximum radial torque at joint 1
- —radial force at joint 1
- —maximum radial force at joint 1
5.4. Topological Optimization of the Manipulator Structure
6. Discussion
6.1. Practical Applications and Flexibility
6.2. Limitations
6.3. Significance
6.4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CBRN | Chemical, Biological, Radiological, and Nuclear |
IED | Improvised Explosive Device |
UxO | Unexploded Ordnance |
C-IED | Counter-Improvised Explosive Device |
SLI | Structural Length Index |
GCI | Global Condition Index |
MDCI | Modified Dynamic Conditioning Index |
DOF | Degree of Freedom |
ANOVA | Analysis of Variance |
SCARA | Selective Compliance Articulated Robot Arm |
NSGA II | Non-Dominated Sorting Genetic Algorithm |
FEM | Finite Element Method |
SIMP | Solid Isotropic Material with Penalization |
References
- Systems Engineering Handbook v. 3.2.2; International Council on Systems Engineering: San Diego, CA, USA, 2011.
- Crespi, V.; Galstyan, A.; Lerman, K. Top-down vs bottom-up methodologies in multi-agent system design. Auton. Robot. 2008, 24, 303–313. [Google Scholar] [CrossRef]
- Osiński, J.W.Z. Teoria Konstrukcji Maszyn; PWN: Warsaw, Poland, 1982. [Google Scholar]
- Optymalizacja, Encyklopedia PWN (Online). Available online: https://encyklopedia.pwn.pl/haslo/optymalizacja;3951487.html (accessed on 15 January 2024).
- Monetti, F.M.; Maffei, A. Towards the definition of assembly-oriented modular product architectures: A systematic review. Res. Eng. Des. 2024, 35, 137–169. [Google Scholar] [CrossRef]
- Ostwald, M. Podstawy Optymalizacji Konstrukcji W Projektowaniu Systemowym; Wydawnictwo Politechniki Poznanskiej: Poznań, Poland, 2016. [Google Scholar]
- Bendsøe, M.P.; Sigmund, O. Typology Optimization, Theory, Methods, and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004; p. 381. [Google Scholar]
- Galan-Uribe, E.; Morales-Velazquez, L. Kinematic Optimization of 6DOF Serial Robot Arms by Bio-Inspired Algorithms. IEEE Access 2022, 10, 110485–110496. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, H.; Choi, Y.; Shin, K.; Han, C. Design optimization method for 7 DOF robot manipulator using performance indices. Int. J. Precis. Eng. Manuf. 2017, 18, 293–299. [Google Scholar] [CrossRef]
- Lim, H.; Hwang, S.; Shin, K.; Han, C. The application of the Grey-based Taguchi method to optimize the global performances of the robot manipulator. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [Google Scholar] [CrossRef]
- Mashali, M.; Addeif, M.; Embarak, M. Scara Robot Links Length Optimization by Using Matlab and Verification with Simmechanics and Solidworks. Int. J. Adv. Signal Image Sci. 2020, 6, 8. [Google Scholar] [CrossRef]
- Du, Z.J.; Xiao, Y.Q.; Dong, W. Method for optimizing manipulator’s geometrical parameters and selecting reducers. J. Cent. South Univ. 2013, 20, 1235–1244. [Google Scholar] [CrossRef]
- Hu, M.; Wang, H.; Pan, X. Multi-objective global optimum design of collaborative robots. Struct. Multidiscip. Optim. 2020, 62, 1547–1561. [Google Scholar] [CrossRef]
- Yin, H.; Huang, S.; He, M.; Li, J. A unified design for lightweight robotic arms based on unified description of structure and drive trains. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417716383. [Google Scholar] [CrossRef]
- Lanni, C.; Saramago, S.F.; Ceccarelli, M. Optimal design of 3R manipulators by using classical techniques and simulated annealin. J. Braz. Soc. Mech. Sci. 2002, 24, 293–301. [Google Scholar] [CrossRef]
- Xu, Q.; Zhan, Q.; Tian, X. Link Lengths Optimization Based on Multiple Performance Indexes of Anthropomorphic Manipulators. IEEE Access 2021, 9, 20089–20099. [Google Scholar] [CrossRef]
- Yao, P.; Zhou, K.; Lin, Y.; Tang, Y. Light-weight topological optimization for upper arm of an industrialwelding robot. Metals 2019, 9, 1020. [Google Scholar] [CrossRef]
- Kouritem, S.A.; Abouheaf, M.I.; Nahas, N.; Hassan, M. A multi-objective optimization design of industrial robot arms. Alex. Eng. J. 2022, 61, 12847–12867. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Zhao, C.; Zhang, P.; Zhang, Y.; Cai, Y. Optimal design of lightweight serial robots by integrating topology optimization and parametric system optimization. Mech. Mach. Theory 2019, 132, 48–65. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Steinert, M. Topology and Parametric Optimization-Based Design Processes for Lightweight Structures. Appl. Sci. 2020, 10, 4496. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Javed, A. Topology optimization of industrial manipulator-link considering dynamic loading. Mater. Today Proc. 2019, 18, 3717–3725. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Javed, A. Topology optimization of rigid-links for industrial manipulator considering dynamic loading conditions. Mech. Mach. Theory 2020, 153, 103979. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Javed, A. Topology optimization of KUKA KR16 industrial robot using equivalent static load method. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021, Baku, Azerbaijan, 22–22 May 2021. [Google Scholar] [CrossRef]
- Sha, L.; Lin, A.; Xi, Q.; Kuang, S. A topology optimization method for robot light-weight design under multi-working conditions and its application on upper-limb powered exoskeleton. In Proceedings of the 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Shenzhen, China, 18–20 November 2020. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Hou, Z.; Yao, J.; Zhao, Y. Optimal design and kinematics analysis of 5-DOF hybrid serial-parallel manipulator. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 69–76. [Google Scholar] [CrossRef]
- Wu, H.; Yin, M.; Zhao, Z.; Xu, Z. Topology optimization method and lightweight design of anthropomorphic manipulator. J. Phys. Conf. Ser. 2020, 1453, 012068. [Google Scholar] [CrossRef]
- Liu, B.; Sha, L.; Huang, K.; Zhang, W.; Yang, H. A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications. Int. J. Adv. Robot. Syst. 2022, 19, 1–22. [Google Scholar] [CrossRef]
- Krakówka, T.; Typiak, A.; Cader, M. Selection of Manipulator Configuration for a Portable Robot for Special Tasks. J. Autom. Mob. Robot. Intell. Syst. 2022, 2022, 21–30. [Google Scholar] [CrossRef]
- Potra, F.A.; Wright, S.J. Interior-point methods. J. Comput. Appl. Math. 2000, 124, 281–302. [Google Scholar] [CrossRef]
- Budynas, R.G.; Nisbett, J.K.; Tangchaichit, K.; Tangchaichit, K.; Shigley, J.E. Shigley’s Mechanical Engineering Design; McGraw-Hill Education: New York, NY, USA, 2015; p. 1095. [Google Scholar]
- Bendsøe, M.P.; Díaz, A.R.; Lipton, R.; Taylor, J.E. Optimal design of material properties and material distribution for multiple loading conditions. Int. J. Numer. Meth. Engng. 1995, 38, 1149. [Google Scholar] [CrossRef]
- Next-Gen Topology Optimization Software|nTop|nTop. Available online: https://www.ntop.com/software/capabilities/topology-optimization/ (accessed on 15 January 2024).
Angle [Deg] | Fgx1 [N] | Fgy1 [N] | Fpx [N] | Fpy [N] |
---|---|---|---|---|
22.5 | 5759 | −12,008 | −4941 | 11,929 |
45 | 12,920 | −12,181 | −12,102 | 12,102 |
67.5 | 19,084 | −7646 | −18,266 | 7566 |
90 | 20,389 | −80 | −19,571 | 0 |
112.5 | 15,961 | 6273 | −15,144 | −6273 |
135 | 11,973 | 11,156 | −11,156 | −11,156 |
157.5 | 5701 | 11,788 | −4883 | −11,788 |
180 | 818 | 9763 | 0 | −9763 |
202.5 | −5759 | 11,929 | 4941 | −11,929 |
225 | −12,920 | 12,102 | 12,102 | −12,102 |
247.5 | −19,084 | 7566 | 18,266 | −7566 |
270 | −20,389 | 0 | 19,571 | 0 |
292.5 | −15,961 | −6352 | 15,144 | 6273 |
315 | −11,973 | −11,235 | 11,156 | 11,156 |
337.5 | −5701 | −11,868 | 4883 | 11,788 |
360 | −818 | −9842 | 0 | 9763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krakówka, T.; Typiak, A.; Typiak, R.; Cader, M. Capabilities-Based Approach to Parameters Selection for Manipulators of Man-Portable Unmanned Ground Vehicles. Appl. Sci. 2025, 15, 3368. https://doi.org/10.3390/app15063368
Krakówka T, Typiak A, Typiak R, Cader M. Capabilities-Based Approach to Parameters Selection for Manipulators of Man-Portable Unmanned Ground Vehicles. Applied Sciences. 2025; 15(6):3368. https://doi.org/10.3390/app15063368
Chicago/Turabian StyleKrakówka, Tomasz, Andrzej Typiak, Rafał Typiak, and Maciej Cader. 2025. "Capabilities-Based Approach to Parameters Selection for Manipulators of Man-Portable Unmanned Ground Vehicles" Applied Sciences 15, no. 6: 3368. https://doi.org/10.3390/app15063368
APA StyleKrakówka, T., Typiak, A., Typiak, R., & Cader, M. (2025). Capabilities-Based Approach to Parameters Selection for Manipulators of Man-Portable Unmanned Ground Vehicles. Applied Sciences, 15(6), 3368. https://doi.org/10.3390/app15063368