Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis
Abstract
:1. Introduction
- A.
- To identify which of these types of neural networks (CNN; GAN; hybrid NN; transformer NN) are most widely used to date.
- B.
- To understand how these techniques can improve the early diagnosis of CAL and ABL in periodontal patients.
2. Materials and Methods
2.1. Convolutional Neural Network (CNN)
2.2. Hybrid Neural Network
2.3. Transformer Neural Network
2.4. Generative Adversarial Network
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Clin. Periodontol. 2018, 45, S149–S161. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; D Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Keller Celeste, R.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral Health 1 Oral Diseases: A Global Public Health Challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Cholan, P.; Ramachandran, L.; Umesh, S.G.; Sucharitha, P.; Tadepalli, A.; Palanisamy, S. The Impetus of Artificial Intelligence on Periodontal Diagnosis: A Brief Synopsis. Cureus 2023, 15, e43583. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification. J. Clin. Periodontol. 2018, 45, S1–S8. [Google Scholar] [CrossRef]
- Heo, M.S.; Kim, J.E.; Hwang, J.J.; Han, S.S.; Kim, J.S.; Yi, W.J.; Park, I.W. Dmfr 50th Anniversary: Review Article Artificial Intelligence in Oral and Maxillofacial Radiology: What Is Currently Possible? Dentomaxillofacial Radiol. 2020, 50, 20200375. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Cutaia, G.; Salvaggio, L.; Rubino, S.; Portoghese, M.; Ferraro, M.; Corso, R.; Piraino, G.; Ingrassia, T.; et al. Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI. In Proceedings of the Image Analysis and Processing—ICIAP 2023 Workshops, Udine, Italy, 11–15 September 2023; pp. 83–92. [Google Scholar]
- Corso, R.; Comelli, A.; Salvaggio, G.; Tegolo, D. New Parametric 2D Curves for Modeling Prostate Shape in Magnetic Resonance Images. Symmetry 2024, 16, 755. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Al-Sayegh, S.W. Hybrid Neural Network. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 763–770. [Google Scholar]
- Yuan, Y.; Zhang, X.; Wang, Y.; Li, H.; Qi, Z.; Du, Z.; Chu, Y.; Feng, D.; Hu, J.; Xie, Q.; et al. Multimodal Data Integration Using Deep Learning Predicts Overall Survival of Patients with Glioma. View 2024, 5, 20240001. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, J.; Gou, Y.; Sun, S.; Hao, J.; Cui, Y. Inside Front Cover: Development and Validation of a Machine Learning-based Model of Ischemic Stroke Risk in the Chinese Elderly Hypertensive Population (View 6/2024). View 2024, 5, 20240059. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and Diagnosis of Dental Caries Using a Deep Learning-Based Convolutional Neural Network Algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef]
- Vinayahalingam, S.; Kempers, S.; Limon, L.; Deibel, D.; Maal, T.; Hanisch, M.; Bergé, S.; Xi, T. Classification of Caries in Third Molars on Panoramic Radiographs Using Deep Learning. Sci. Rep. 2021, 11, 12609. [Google Scholar] [CrossRef] [PubMed]
- Lo Casto, A.; Spartivento, G.; Benfante, V.; Di Raimondo, R.; Ali, M.; Di Raimondo, D.; Tuttolomondo, A.; Stefano, A.; Yezzi, A.; Comelli, A. Artificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographs. Life 2023, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Chen, D.; Wu, F.; Zhu, F.; Zhu, H. Artificial Intelligence Model to Detect Real Contact Relationship between Mandibular Third Molars and Inferior Alveolar Nerve Based on Panoramic Radiographs. Diagnostics 2021, 11, 1664. [Google Scholar] [CrossRef]
- Fukuda, M.; Ariji, Y.; Kise, Y.; Nozawa, M.; Kuwada, C.; Funakoshi, T.; Muramatsu, C.; Fujita, H.; Katsumata, A.; Ariji, E. Comparison of 3 Deep Learning Neural Networks for Classifying the Relationship between the Mandibular Third Molar and the Mandibular Canal on Panoramic Radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 336–343. [Google Scholar] [CrossRef]
- Karthikeyan, T.; Manikandaprabhu, P. A Novel Approach for Inferior Alveolar Nerve (IAN) Injury Identification Using Panoramic Radiographic Image. Biomed. Pharmacol. J. 2015, 8, 307–314. [Google Scholar] [CrossRef]
- Kim, B.S.; Yeom, H.G.; Lee, J.H.; Shin, W.S.; Yun, J.P.; Jeong, S.H.; Kang, J.H.; Kim, S.W.; Kim, B.C. Deep Learning-Based Prediction of Paresthesia after Third Molar Extraction: A Preliminary Study. Diagnostics 2021, 11, 1572. [Google Scholar] [CrossRef]
- Yang, H.; Jo, E.; Kim, H.J.; Cha, I.H.; Jung, Y.S.; Nam, W.; Kim, J.Y.; Kim, J.K.; Kim, Y.H.; Oh, T.G.; et al. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs. J. Clin. Med. 2020, 9, 1839. [Google Scholar] [CrossRef]
- Cairone, L.; Benfante, V.; Bignardi, S.; Marinozzi, F.; Yezzi, A.; Tuttolomondo, A.; Salvaggio, G.; Bini, F.; Comelli, A. Robustness of Radiomics Features to Varying Segmentation Algorithms in Magnetic Resonance Images. In Proceedings of the Image Analysis and Processing—ICIAP 2022 Workshops, Lecce, Italy, 23–27 May 2022; pp. 462–472. [Google Scholar]
- Benfante, V.; Salvaggio, G.; Ali, M.; Cutaia, G.; Salvaggio, L.; Salerno, S.; Busè, G.; Tulone, G.; Pavan, N.; Di Raimondo, D.; et al. Grading and Staging of Bladder Tumors Using Radiomics Analysis in Magnetic Resonance Imaging. In Proceedings of the Image Analysis and Processing—ICIAP 2022 Workshops, Lecce, Italy, 23–27 May 2022; pp. 93–103. [Google Scholar]
- Takahashi, T.; Nozaki, K.; Gonda, T.; Mameno, T.; Wada, M.; Ikebe, K. Identification of Dental Implants Using Deep Learning—Pilot Study. Int. J. Implant. Dent. 2020, 6, 53. [Google Scholar] [CrossRef]
- Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an Artificial Intelligence System for Detecting Vertical Root Fracture on Panoramic Radiography. Oral Radiol. 2020, 36, 337–343. [Google Scholar] [CrossRef]
- Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A Deep-Learning Artificial Intelligence System for Assessment of Root Morphology of the Mandibular First Molar on Panoramic Radiography. Dentomaxillofacial Radiol. 2019, 48, 20180218. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwak, H.J.; Oh, J.M.; Jha, N.; Kim, Y.J.; Kim, W.; Baik, U.B.; Ryu, J.J. Automated Detection of TMJ Osteoarthritis Based on Artificial Intelligence. J. Dent. Res. 2020, 99, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yu, H.J.; Kim, M.J.; Kim, J.W.; Choi, J. Automated Cephalometric Landmark Detection with Confidence Regions Using Bayesian Convolutional Neural Networks. BMC Oral Health 2020, 20, 270. [Google Scholar] [CrossRef] [PubMed]
- Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci. Rep. 2019, 9, 8495. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.S.; Song, I.S.; Jung, K.H. DeNTNet: Deep Neural Transfer Network for the Detection of Periodontal Bone Loss Using Panoramic Dental Radiographs. Sci. Rep. 2019, 9, 17615. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Diagnosis and Prediction of Periodontally Compromised Teeth Using a Deep Learning-Based Convolutional Neural Network Algorithm. J. Periodontal Implant. Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.; Zhou, Y.; Chen, Q.; She, Y.; Gao, F.; Xu, Y.; Chen, J.; Gao, X. An Interpretable Computer-Aided Diagnosis Method for Periodontitis From Panoramic Radiographs. Front. Physiol. 2021, 12, 655556. [Google Scholar] [CrossRef]
- Uzun Saylan, B.C.; Baydar, O.; Yeşilova, E.; Kurt Bayrakdar, S.; Bilgir, E.; Bayrakdar, İ.Ş.; Çelik, Ö.; Orhan, K. Assessing the Effectiveness of Artificial Intelligence Models for Detecting Alveolar Bone Loss in Periodontal Disease: A Panoramic Radiograph Study. Diagnostics 2023, 13, 1800. [Google Scholar] [CrossRef]
- Alotaibi, G.; Awawdeh, M.; Farook, F.F.; Aljohani, M.; Aldhafiri, R.M.; Aldhoayan, M. Artificial Intelligence (AI) Diagnostic Tools: Utilizing a Convolutional Neural Network (CNN) to Assess Periodontal Bone Level Radiographically—A Retrospective Study. BMC Oral Health 2022, 22, 399. [Google Scholar] [CrossRef]
- Moran, M.; Faria, M.; Giraldi, G.; Bastos, L.; Conci, A. Do Radiographic Assessments of Periodontal Bone Loss Improve with Deep Learning Methods for Enhanced Image Resolution? Sensors 2021, 21, 2013. [Google Scholar] [CrossRef]
- Lin, P.L.; Huang, P.Y.; Huang, P.W. Automatic Methods for Alveolar Bone Loss Degree Measurement in Periodontitis Periapical Radiographs. Comput. Methods Programs Biomed. 2017, 148, 1–11. [Google Scholar] [CrossRef]
- Tsoromokos, N.; Parinussa, S.; Claessen, F.; Moin, D.A.; Loos, B.G. Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning. Int. Dent. J. 2022, 72, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Ouyang, H.; Cao, Y.; Huang, T.; Ahn, E.; Zhang, M.; Liu, H. Automated Periodontitis Bone Loss Diagnosis in Panoramic Radiographs Using a Bespoke Two-Stage Detector. Comput. Biol. Med. 2023, 152, 106374. [Google Scholar] [CrossRef]
- Chen, C.C.; Wu, Y.F.; Aung, L.M.; Lin, J.C.Y.; Ngo, S.T.; Su, J.N.; Lin, Y.M.; Chang, W.J. Automatic Recognition of Teeth and Periodontal Bone Loss Measurement in Digital Radiographs Using Deep-Learning Artificial Intelligence. J. Dent. Sci. 2023, 18, 1301–1309. [Google Scholar] [CrossRef]
- Kurt-Bayrakdar, S.; Bayrakdar, İ.Ş.; Yavuz, M.B.; Sali, N.; Çelik, Ö.; Köse, O.; Uzun Saylan, B.C.; Kuleli, B.; Jagtap, R.; Orhan, K. Detection of Periodontal Bone Loss Patterns and Furcation Defects from Panoramic Radiographs Using Deep Learning Algorithm: A Retrospective Study. BMC Oral Health 2024, 24, 155. [Google Scholar] [CrossRef]
- Chen, I.H.; Lin, C.H.; Lee, M.K.; Chen, T.E.; Lan, T.H.; Chang, C.M.; Tseng, T.Y.; Wang, T.; Du, J.K. Convolutional-Neural-Network-Based Radiographs Evaluation Assisting in Early Diagnosis of the Periodontal Bone Loss via Periapical Radiograph. J. Dent. Sci. 2024, 19, 550–559. [Google Scholar] [CrossRef]
- Thanathornwong, B.; Suebnukarn, S. Automatic Detection of Periodontal Compromised Teeth in Digital Panoramic Radiographs Using Faster Regional Convolutional Neural Networks. Imaging Sci. Dent. 2020, 50, 169–174. [Google Scholar] [CrossRef]
- Guler Ayyildiz, B.; Karakis, R.; Terzioglu, B.; Ozdemir, D. Comparison of Deep Learning Methods for the Radiographic Detection of Patients with Different Periodontitis Stages. Dentomaxillofac Radiol. 2024, 53, 32–42. [Google Scholar] [CrossRef]
- Lin, T.J.; Mao, Y.C.; Lin, Y.J.; Liang, C.H.; He, Y.Q.; Hsu, Y.C.; Chen, S.L.; Chen, T.Y.; Chen, C.A.; Li, K.C.; et al. Evaluation of the Alveolar Crest and Cemento-Enamel Junction in Periodontitis Using Object Detection on Periapical Radiographs. Diagnostics 2024, 14, 1687. [Google Scholar] [CrossRef]
- Chang, H.J.; Lee, S.J.; Yong, T.H.; Shin, N.Y.; Jang, B.G.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci. Rep. 2020, 10, 7531. [Google Scholar] [CrossRef]
- Xue, T.; Chen, L.; Sun, Q. Deep Learning Method to Automatically Diagnose Periodontal Bone Loss and Periodontitis Stage in Dental Panoramic Radiograph. J. Dent. 2024, 150, 105373. [Google Scholar] [CrossRef]
- Ertaş, K.; Pence, I.; Cesmeli, M.S.; Ay, Z.Y. Determination of the Stage and Grade of Periodontitis According to the Current Classification of Periodontal and Peri-Implant Diseases and Conditions (2018) Using Machine Learning Algorithms. J. Periodontal Implant. Sci. 2022, 53, 38. [Google Scholar] [CrossRef]
- Kim, M.J.; Chae, S.G.; Bae, S.J.; Hwang, K.G. Unsupervised Few Shot Learning Architecture for Diagnosis of Periodontal Disease in Dental Panoramic Radiographs. Sci. Rep. 2024, 14, 23237. [Google Scholar] [CrossRef]
- Dujic, H.; Meyer, O.; Hoss, P.; Wölfle, U.C.; Wülk, A.; Meusburger, T.; Meier, L.; Gruhn, V.; Hesenius, M.; Hickel, R.; et al. Automatized Detection of Periodontal Bone Loss on Periapical Radiographs by Vision Transformer Networks. Diagnostics 2023, 13, 3562. [Google Scholar] [CrossRef]
- Kearney, V.P.; Yansane, A.I.M.; Brandon, R.G.; Vaderhobli, R.; Lin, G.H.; Hekmatian, H.; Deng, W.; Joshi, N.; Bhandari, H.; Sadat, A.S.; et al. A Generative Adversarial Inpainting Network to Enhance Prediction of Periodontal Clinical Attachment Level. J. Dent. 2022, 123, 104211. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Sanz, M. Implementation of the New Classification of Periodontal Diseases: Decision-Making Algorithms for Clinical Practice and Education. J. Clin. Periodontol. 2019, 46, 398–405. [Google Scholar] [CrossRef]
- Woelber, J.; Fleiner, J.; Rau, J.; Ratka-Krüger, P.; Hannig, C. Accuracy and Usefulness of CBCT in Periodontology: A Systematic Review of the Literature. Int. J. Periodontics Restor. Dent. 2018, 38, 289–297. [Google Scholar] [CrossRef]
- Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Halim, M.S.B.; Maqsood, A.; Alam, M.K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry—A Systematic Review. BioMed Res. Int. 2021, 2021, 9751564. [Google Scholar] [CrossRef]
- Feher, B.; Tussie, C.; Giannobile, W.V. Applied Artificial Intelligence in Dentistry: Emerging Data Modalities and Modeling Approaches. Front. Artif. Intell. 2024, 7, 1427517. [Google Scholar] [CrossRef]
- Kundu, S. AI in Medicine Must Be Explainable. Nat. Med. 2021, 27, 1328. [Google Scholar] [CrossRef]
- Reddy, S. Explainability and Artificial Intelligence in Medicine. Lancet Digit. Health 2022, 4, e214–e215. [Google Scholar] [CrossRef]
- Mandl, K.D.; Gottlieb, D.; Mandel, J.C. Integration of AI in Healthcare Requires an Interoperable Digital Data Ecosystem. Nat. Med. 2024, 30, 631–634. [Google Scholar] [CrossRef]
- Kristiansen, T.B.; Kristensen, K.; Uffelmann, J.; Brandslund, I. Erroneous Data: The Achilles’ Heel of AI and Personalized Medicine. Front. Digit. Health 2022, 4, 862095. [Google Scholar] [CrossRef]
- Giaccone, P.; Benfante, V.; Stefano, A.; Cammarata, F.P.; Russo, G.; Comelli, A. PET Images Atlas-Based Segmentation Performed in Native and in Template Space: A Radiomics Repeatability Study in Mouse Models. In Proceedings of the Image Analysis and Processing—ICIAP 2022 Workshops, Lecce, Italy, 23–27 May 2022; pp. 351–361. [Google Scholar]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef]
- Basirinia, G.; Ali, M.; Comelli, A.; Sperandeo, A.; Piana, S.; Alongi, P.; Longo, C.; Di Raimondo, D.; Tuttolomondo, A.; Benfante, V. Theranostic Approaches for Gastric Cancer: An Overview of In Vitro and In Vivo Investigations. Cancers 2024, 16, 3323. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Di Raimondo, D.; Salvaggio, G.; Tuttolomondo, A.; Comelli, A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals 2024, 17, 126. [Google Scholar] [CrossRef]
Paper | Input Image Type | Input Image Number | Input Image Size | AI Method Used | Bone Loss Evaluation | Reference Test | GitHub Link (Accessed on 12 February 2025) |
---|---|---|---|---|---|---|---|
Krois et al., 2019 [29] | OPT segment | 2001 | 64 × 64 pixels | CNN (NS) | % PBL (perio bone loss) | 3 Indipendent examiners | NS |
Kim et al., 2019 [30] | OPT segment | 12,179 | 512 × 1024 pixels | CNN (DeNTNet) | PBL present/absent | 15y expert dental clinician | NS |
Lee et al., 2018 [31] | Periapical rx crop | 1044 | 224 × 224 pixels | CNN (VGG-19) | PCT(perio compromised theet) healthy, severe, moderate | 3 expert periodontist clinical evaluation | NS |
Li et al., 2021 [32] | OPT | 302 | 1480 × 2776 pixels | CNN (Deetal-Perio) | ABL(alveolar bone loss) mild, moderate, severe | 1 expert dentist | NS |
Uzun Saylan Bilge et al., 2023 [33] | OPT | 685 | 1280 × 512 pixels | CNN (YOLO-v5) | ABL present/absent in 4 different regions (Incisor, canine, premolar, molar) | 1 oral radiologist, 1 perio specialist | NS |
Alotaibi et al., 2022 [34] | Periapical rx crop (only anterior teeth) | 1724 | 150 × 150 pixels | CNN (VGG-16) | ABL present/absent and ABL mild/moderate/severe | 3 indipendente examiners (perio specialist) | NS |
Moran et al., 2021 [35] | Periapical rx crop | 2622 | 224 × 224 (resnet), 299 × 299 (inception) | CNN (Resnet, Inception) | PBL present/absent | 2 expert dentist | NS |
Lin et al., 2017 [36] | Periapical rx crop | 12 | 860 × 650 pixels | CNN (Ns) | ABL degree measurement | Ns | NS |
Tsoromokos et al., 2022 [37] | Periapical rx crop | 446 | 128 × 128 pixels | CNN (Ns) | %ABL (<33% or >33%) | 1 periodontologist | NS |
Kong et al., 2022 [38] | OPT | 1747 | 512 × 512 pixels | CNN (PDCNN) | RBL (radiographic bone loss: healthy, mild, medium, severe); FI (furcation involved: healthy, mild, severe) | Ns (dentists) | https://github.com/PuckBlink/PDCNN |
Chen et al., 2023 [39] | Periapical Rx | 8000 | 640 × 640 | CNN (YOLOv5) | %ABL | 5 periodontologist | https://github.com/ultralytics/yolov5 |
Bayrakdar et al., 2024 [40] | OPT | 1121 | 1024 × 512 | CNN (U-Net) | Total ABL; Horizontal BL; Vertical BL; Furcation defects | 3 periodontist, 1 maxillofacial radiologist | NS |
Chen et al., 2024 [41] | Periapical rx crop | 336 | NS | CNN (U-Net; Mask-RCNN) | %ABL degree (stage I < 15%; stage II 15–33.3%; stage III > 33.3%) | 3 periodontist | NS |
Thanathornwong et al., 2020 [42] | OPT | 100 | 1612 × 856 pixels | CNN (ResNet 101) | PBL present/absent | 3 experts | NS |
Ayyildiz et al., 2024 [43] | OPT | 2533 | 1260 × 600 pixels | CNN (ResNet50, DenseNet121, InceptionV3) | Healthy, Stage I–II, Stage III–IV | 3 examiners (periodontology experts) | NS |
Lin et al., 2024 [44] | Periapical rx | 194 | 825 × 1200 pixels | CNN (YOLOv8, Mask-RCNN) | Segmentation of Tooth, bone level and CEJ | 1 dentist | NS |
Chang et al., 2020 [45] | OPT | 340 | 1024 × 1024 pixels | HYBRID NEURAL NETWORK (Ns) | %PBL (perio bone loss) | 3 OMF radiologist | NS |
Xue et al., 2024 [46] | OPT | 320 | 640 × 640 pixels | HYBRID NEURAL NETWORK(YOLOv8, Mask R-CNN, TransUNet) | %ABL degree (stage I <15%; stage II 15–33.3%; stage III >33.3%) | 3 senior dentists expert in periodontology and Radiology | https://github.com/ultralytics/ultralyticsics |
Ertas et al., 2023 [47] | OPT | 144 | 1100 × 550 pixels | HYBRID NEURAL NETWORK(ResNet50, Support Vector Machine Algorithm) | Stage (I, II, III; IV) and Grade (A, B, C) | NS | NS |
Kim et al., 2024 [48] | OPT | 100 | NS | HYBRID NEURAL NETWORK (CVAE convolutional variational autoencoder), UNet) | Periodontitis Present/absent | Dental professional | NS |
Dujic et al., 2023 [49] | Periapical rx | 21,829 | NS | TRANSFORMER NEURAL NETWORK ((ViT-base/ViT- large from Google, BEiT-base/BEiT-large from Microsoft, DeiT-base from Facebook/Meta) | PBL (absent, mild, moderate, severe) | 4 graduated dentist + 3 experts periodontist | NS |
Kearney et al., 2022 [50] | Periapical rx + Bitewing | 103,909 | NS | Generative Adversarial Network (Deep Lab V3+, DETR) | CAL measurement | Clinician recorder CAL | https://github.com/VainF/DeepLabV3Plus-Pytorch https://github.com/facebookresearch/detr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spartivento, G.; Benfante, V.; Ali, M.; Yezzi, A.; Di Raimondo, D.; Tuttolomondo, A.; Lo Casto, A.; Comelli, A. Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis. Appl. Sci. 2025, 15, 3295. https://doi.org/10.3390/app15063295
Spartivento G, Benfante V, Ali M, Yezzi A, Di Raimondo D, Tuttolomondo A, Lo Casto A, Comelli A. Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis. Applied Sciences. 2025; 15(6):3295. https://doi.org/10.3390/app15063295
Chicago/Turabian StyleSpartivento, Giacomo, Viviana Benfante, Muhammad Ali, Anthony Yezzi, Domenico Di Raimondo, Antonino Tuttolomondo, Antonio Lo Casto, and Albert Comelli. 2025. "Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis" Applied Sciences 15, no. 6: 3295. https://doi.org/10.3390/app15063295
APA StyleSpartivento, G., Benfante, V., Ali, M., Yezzi, A., Di Raimondo, D., Tuttolomondo, A., Lo Casto, A., & Comelli, A. (2025). Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis. Applied Sciences, 15(6), 3295. https://doi.org/10.3390/app15063295