Exploring the Multifunctionality of Passiflora caerulea L.: From Traditional Remedies to Modern Applications
Abstract
:1. Introduction
2. Taxonomy
3. Chemical Composition
4. Biological Activities of Passiflora caerulea L.
4.1. Antioxidant Activity
4.2. Anti-Inflammatory Activity
4.3. Antibacterial Activity
4.4. Anticancer Activity
4.5. Neuromodulatory Activity
4.6. Gastroprotective Activity
5. Patented Products and Applications of Passiflora caerulea Extract
6. Toxicity of P. caerulea L.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
NO | Nitric Oxide |
LPO | Lipid Peroxidation |
FRAP | Ferric Reducing Antioxidant Power |
CUPRAC | Cupric Ion Reducing Antioxidant Capacity |
IC50 | Half-Maximal Inhibitory Concentration |
ROS | Reactive oxygen species |
BHT | Butylated Hydroxytoluene |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide |
AChE | Acetylcholinesterase |
GABA | Gamma-aminobutyric acid |
IBD | Inflammatory bowel disease |
TiO2NPs | Titanium dioxide nanoparticles |
LD50 | Lethal dose, 50% |
References
- Product, N.; Taskforce, S. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Leal, A.E.B.P.; de Lavor, É.M.; Barbosa, J.d.M.; Araújo, M.T.d.M.F.; Alves, C.d.S.C.; Júnior, R.G.d.O.; de Lima, Á.A.N.; Almeida, J.R.G.d.S. Pharmacological Activities of the Genus Passiflora (Passifloraceae): A Patent Review. Curr. Top. Med. Chem. 2022, 22, 2315–2328. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H. Antioxidant, antimicrobial, and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges, and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2019, 83, 770–803. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges, and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Reberio, A.D.; Ansari, N.J.; Kumar, S.; Khan, J.T.; Chowdhury, S.; El-Mordy, F.M.A.; Hannan, J.M.A.; Flatt, P.R.; Abdel-Wahab, Y.H.A.; et al. Therapeutic potential of medicinal plants and their phytoconstituents in diabetes, cancer, infections, cardiovascular diseases, inflammation, and gastrointestinal disorders. Biomedicines 2025, 13, 454. [Google Scholar] [CrossRef]
- Tlili, N.; Sarikurkcu, C. Bioactive compounds profile, enzyme inhibitory, and antioxidant activities of water extracts from five selected medicinal plants. Ind. Crops Prod. 2020, 151, 112448. [Google Scholar] [CrossRef]
- El-Askary, H.I.; Haggag, M.Y.; Abou-Hussein, D.R.; Hussein, S.M.; Sleem, A.A. Bioactivity-guided study of Passiflora caerulea L. leaf extracts. Phytomedicine 2017, 16, 46–57. [Google Scholar]
- Silva, C.G. Tissue Culture and Phytochemical Studies of Podophyllum, Diphylleia, and Passiflora Species. Doctoral Dissertation, University of Nottingham, Nottingham, UK, 2000. [Google Scholar]
- de Lavor, É.M.; Leal, A.E.B.P.; Fernandes, A.W.C.; Ribeiro, F.P.R.d.A.; Barbosa, J.d.M.; e Silva, M.G.; Teles, R.B.d.A.; Oliveira, L.F.d.S.; Silva, J.C.; Rolim, L.A.; et al. Ethanolic extract of the aerial parts of Passiflora cincinnata Mast. reduces nociceptive and inflammatory events in mice. Phytomedicine 2018, 47, 58–68. [Google Scholar] [CrossRef]
- Smruthi, R.; Divya, M.; Archana, K.; Ravi, M. The active compounds of Passiflora spp. and their potential medicinal uses from both in vitro and in vivo evidence. J. Adv. Biomed. Pharm. Sci. 2021, 4, 45–55. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, S.; Hou, G.; Zhao, F.; Meng, Q.; Tan, S. Phytochemistry, nutritional composition, health benefits, and future prospects of Passiflora: A review. Food Chem. 2023, 428, 136825. [Google Scholar] [CrossRef] [PubMed]
- Bandoni, A. Medicinal and Aromatic Plants of South America; Springer: Cham, Switzerland, 2021; Volume 2, ISBN 9783030628178. [Google Scholar]
- Chandra, S.; Gahlot, M.; Choudhary, A.N.; Palai, S.; De, R.S.; Eversong, J.; Vasconcelos, L.D.; Antonio, F.; Antonio, P.; Farias, M.D.; et al. Scientific evidence of anticancer potential of medicinal plants. Food Chem. Adv. 2023, 2, 100239. [Google Scholar] [CrossRef]
- Srinivasan, N.; Roy, A. Anticonvulsant properties of some medicinal plants: A review. Asian J. Pharm. Clin. Res. 2017, 10, 2–4. [Google Scholar] [CrossRef]
- Gerasimova, A.; Nikolova, K.; Petkova, N.; Ivanov, I.; Dincheva, I.; Tumbarski, Y.; Yanakieva, V.; Todorova, M.; Gentscheva, G.; Gavrilova, A.; et al. Metabolic profile of leaves and pulp of Passiflora caerulea L. (Bulgaria) and their biological activities. Plants 2024, 13, 1731. [Google Scholar] [CrossRef]
- Minteguiaga, M.; Wallace, F.; Basile, P.; Ferreira, F.; Olivaro, C.; Dellacassa, E. Passiflora caerulea L.; Springer: Cham, Switzerland, 2021; Volume 2, pp. 411–427. [Google Scholar]
- Aseervatham, G.S.B.; Abbirami, E.; Sivasudha, T.; Ruckmani, K. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit, and oxidative stress in pilocarpine-induced epileptic mice. Metab. Brain Dis. 2019, 35, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.Z.; Kao, C.L.; Li, W.J.; Li, H.T. Chemical constituents of leaves of Passiflora edulis. Chem. Nat. Compd. 2017, 53, 990–991. [Google Scholar] [CrossRef]
- Frye, A.; Haustein, C. Extraction, identification, and quantification of harmala alkaloids in three species of Passiflora. Am. J. Undergrad. Res. 2007, 6, 19–26. [Google Scholar]
- Anzoise, M.L.; Marrassini, C.; Bach, H.; Gorzalczany, S. Beneficial properties of Passiflora caerulea on experimental colitis. J. Ethnopharmacol. 2016, 194, 137–145. [Google Scholar] [CrossRef]
- Sindhura, L.; Bobby, N. Phytochemical profiles, antioxidant, antimicrobial, and cytotoxic cell lines activity of Passiflora caerulea L. Biomed. Pharmacol. J. 2022, 15, 2365–2379. [Google Scholar] [CrossRef]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; Siqueira, D.; Chaves, D.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea, and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev. Bras. Farmacogn. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- Nikolova, K.; Velikova, M.; Gentscheva, G.; Gerasimova, A.; Slavov, P.; Harbaliev, N.; Makedonski, L.; Buhalova, D.; Petkova, N.; Gavrilova, A. Chemical compositions, pharmacological properties, and medicinal effects of genus Passiflora L.: A review. Plants 2024, 13, 228. [Google Scholar] [CrossRef]
- Paniagua-Zambrana, N.Y.; Bussmann, R.W. (Eds.) Ethnobotany of the Andes; Springer: Cham, Switzerland, 2020; ISBN 9783030289324. [Google Scholar]
- Ain, S.M.; Nakhooda, M. Clonal and Micropropagation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, ISBN 9780123948076. [Google Scholar]
- Ahmad, N. Meta-Topolin: A Growth Regulator for Plant Biotechnology and Agriculture; Springer: Singapore, 2021; ISBN 9789811590450. [Google Scholar]
- The POWO (Plants of the World Online). Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:321949-2 (accessed on 2 February 2025).
- PFAF (Plants for a Future). Available online: https://pfaf.org/user/plant.aspx?latinname=Passiflora+caerulea (accessed on 2 February 2025).
- Thokchom, R.; Mandal, G. Production preference and importance of passion fruit (Passiflora edulis): A review. J. Agric. Eng. Food Technol. 2020, 4, 27–30. [Google Scholar]
- Miroddi, M.; Calapai, G.; Navarra, M.; Minciullo, P.L.; Gangemi, S. Passiflora incarnata L.: Ethnopharmacology, clinical application, safety, and evaluation of clinical trials. J. Ethnopharmacol. 2013, 150, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Şesan, T.E. Botanical and phytochemical approach on Passiflora spp.—New nutraceutical crop in Romania. J. Plant Dev. 2016, 23, 97–126. [Google Scholar]
- Bottoli, G.C.S.A.C.B.G. Analyses of Passiflora compounds by chromatographic and electrophoretic techniques. Crit. Rev. Anal. Chem. 2014, 45, 76–95. [Google Scholar] [CrossRef]
- Carvalho, Z.; Martins, J.; Frota, R.; Sanches, E.A.; Campelo, P.H.; Araújo, J. De Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. Food Res. 2023, 166, 112626. [Google Scholar] [CrossRef]
- Farag, M.A.; Otify, A.; Porzel, A.; Michel, C.G.; Elsayed, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal. Bioanal. Chem. 2016, 408, 3125–3143. [Google Scholar] [CrossRef]
- Pereira, C.A.M.; Yariwake, J.H.; Mccullagh, M. Distinction of the C-glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal. 2005, 301, 295–301. [Google Scholar] [CrossRef]
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef]
- Quiroga, O.E.; Bou, S.; Vigo, M.S.; Nolasco, S.M. Chemical Characteristics of Passiflora caerulea Sedd Oil and Residual Seed Meal. Molecules 2000, 5, 376–378. [Google Scholar] [CrossRef]
- Prithviraj, H.S.; NK, H.K.; Basavaraj, G.L.; Nataraj, K.; Jagannath, S. Preliminary phytochemical analysis and antibacterial activity of leaf and leaf derived callus extracts of Passiflora caerulea: An important medicinal plant. World J. Adv. Res. Rev. 2023, 17, 203–209. [Google Scholar] [CrossRef]
- Guha, S.; Majumder, K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J. Food Biochem. 2019, 43, e12531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Dan Ramdath, D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, X.; Fatima, A.; Zhang, L.; Yuan, G.; Lian, F.; Wang, Y. Antibacterial Activity and Mechanisms of Plant Flavonoids against Gram-Negative Bacteria Based on the Antibacterial Statistical Model. Pharmaceuticals 2024, 17, 292. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species. Sci. World J. 2014, 2014, 167309. [Google Scholar] [CrossRef] [PubMed]
- Badalova, V.; Suleymanov, T.; Mammadov, R.; Atay, M. Determination of the Antimicrobial Activity of Ethanolic Extracts of Some Passiflora L. Species, First Introduced in Azerbaijan. Bull. Sci. Pract. 2022, 8, 92–101. [Google Scholar] [CrossRef]
- Amaral, R.G.; Vieira, S.; Gomes, F.; Claudia, M.; Pessoa, C.Ó.; Andrade, L.N.; Severino, P.; Célio, G.; Bomfim, L.M.; Botelho, M.; et al. Cytotoxic potential of 14 Passiflora species against cancer cells. J. Med. Plants Res. 2019, 13, 157–166. [Google Scholar] [CrossRef]
- Santhoshkumar, J.; Sowmya, B.; Kumar, S.V.; Rajeshkumar, S. Toxicology evaluation and Antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. S. Afr. J. Chem. Eng. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Medina, J.H.; Paladini, A.C.; Wolfman, C.; Stein, M.L.D.E.; Calvo, D.; Diaz, L.E.; Peiqat, C. Occurring Ligand for Benzodiazepine Receptors, with Anticonvulsant Properties. Neuropharmacology 1990, 40, 2227–2231. [Google Scholar]
- Malomo, S.A.; Aluko, R.E. In Vitro Acetylcholinesterase-Inhibitory Properties of Enzymatic Hemp Seed Protein Hydrolysates. J. Am. Oil Chem. Soc. 2015, 93, 411–420. [Google Scholar] [CrossRef]
- Cherian, S.; Varshney, P. Food Protein-Induced Enterocolitis Syndrome (FPIES): Review of Recent Guidelines. Curr. Allergy Asthma Rep. 2018, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, O.; Wahling, C.; Staiger, C.; Butterweck, V. Anxiolytic effects of a passion flower (Passiflora incarnata L.) extract in the elevated plus maze in mice. Pharmazie 2009, 64, 31–33. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2016, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Feliú-Hemmelmann, K.; Monsalve, F.; Rivera, C. Melissa officinalis and Passiflora caerulea infusion as physiological stress decreaser. Int. J. Clin. Exp. Med. 2013, 6, 444–451. [Google Scholar]
- Rodríguez-Landa, J.F.; Guill, G.; Cueto-Escobedo, J.; Rivadeneyra-Domínguez, E.; Bernal-Morales, B.; Herrera-Huerta, E.V. Chrysin reduces anxiety-like behavior through actions on GABAA receptors during metestrus-diestrus in the rat. Behav. Brain Res. 2021, 397, 112952. [Google Scholar] [CrossRef] [PubMed]
- Leggio, G.M.; Wang, C. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice. Front. Pharmacol. 2018, 9, 346. [Google Scholar] [CrossRef]
- Wolfman, C.; Viola, H.; Paladini, A.; Dajas, F.; Medina, J.H. Possible Anxiolytic Effects of Chrysin, a Central Benzodiazepine Receptor Ligand Isolated from Passiflora Caerulea. Pharmacol. Biochem. Behav. 1994, 47, 1–4. [Google Scholar] [CrossRef]
- Sartor, R.B.; Wu, G.D. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 2017, 152, 327–339.e4. [Google Scholar] [CrossRef]
- Verspohl, E.J.; Fujii, H.; Homma, K.; Buchwald-Werner, S. Phytomedicine Testing of Perilla frutescens extract and Vicenin 2 for their antispasmodic effect. Eur. J. Integr. Med. 2013, 20, 427–431. [Google Scholar] [CrossRef]
- Keck, M.E.; Zahner, C.; Nicolussi, S.; Drewe, J.; Spura, K.; Blohm, C. Effect of the fixed combination of valerian, lemon balm, passionflower, and butterbur extracts (Ze 185) on the prescription pattern of benzodiazepines in hospitalized psychiatric patients—A retrospective case-control investigation. Phytother. Res. 2020, 34, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z. Passiflora caerulea and Honey Peach Complex Juice and Preparation Method Thereof. CN 104738730 A. 2015. Available online: https://patents.google.com/patent/CN104738730A/en (accessed on 2 February 2025).
- Yang, C. Sugar-Free Passiflora Caerulea Tomato Sauce. CN 104351743 A. 2015. Available online: https://eureka-patsnap-com.libproxy1.nus.edu.sg/patent-CN104351743A (accessed on 2 February 2025).
- Man, G.; Nong, A.; Chen, M.; Li, R. Making Method of Preserved Passiflora caerulea Linn. CN 103330042 B. 2014. Available online: https://patents.google.com/patent/CN103330042B/en?oq=.+CN+103330042+B (accessed on 2 February 2025).
- Yi, S.-S. A Composition for Sleep Induction Comprising Passiflora incarnata Extract. KR 102240706B1. 2021. Available online: https://patents.google.com/patent/KR102240706B1/en (accessed on 2 February 2025).
- Yi, K.; Kim, K.H.; Lim, K.-H.; Lee, J.-K.; Kim, S. A composition comprising Passiflora incarnata L. Extract. KR 102293239B1. 2021. Available online: https://patents.google.com/patent/KR102293239B1/en (accessed on 2 February 2025).
- Ożarowski, M.; Pietrowiak, A.; Gryszczyńska, A. Comparison of in vitro antioxidative activities of crude methanolic extracts of three species of Passiflora from greenhouse using DPPH, ABTS and FRAP methods. Herba Pol. 2019, 65, 10–21. [Google Scholar] [CrossRef]
Chemical Class/Chemical Compound | Main Bioactive Properties | References |
---|---|---|
Flavonoids | ||
Quercetin | Antiallergic, anticancer, antiviral, neuroprotective | [25] |
Kaempferol | Antiallergic, anticancer, antiviral, neuroprotective | [25] |
Luteolin | Antiallergic, anticancer, antiviral, neuroprotective | [25] |
Myricetin | Antioxidant, anti-inflammatory, antimicrobial | [24] |
Naringenin | Antioxidant, anti-inflammatory, neuroprotective | [24] |
Chrysin | Anti-inflammatory, antimicrobial, immune-modulating | [24] |
Orientin | Antioxidant and anti-inflammatory | [24] |
Isoorientin | Antioxidant and anti-inflammatory | [24] |
Vitexin | Antioxidant, anti-inflammatory, antimicrobial | [24] |
Isovitexin | Anti-anxiety, antioxidant, anti-inflammatory | [24] |
Amentoflavone | Antioxidant, anti-inflammatory, potential neuroprotective | [19] |
Epicatechin | Adaptogenic, anti-inflammatory, neuroprotective, antioxidant | [19] |
Flavonoid Glycosides | ||
Luteolin-3-glucoside | Anticancer | [25] |
Chrysoeriol 8-C-glucoside | Antioxidant, anti-inflammatory, neuroprotective | [35] |
Apigenin-6,8-di-C-β-D-glucopyranoside | Antioxidant, anti-inflammatory, antimicrobial | [35] |
Glucosyl Flavonoid | Sedative and antioxidant | [24] |
7-O-Methyl-Isorhamnetin-3-O-Glucoside | Antioxidant and anti-inflammatory | [19] |
Chrysoeriol 8-C-glucoside | Antioxidant and anti-inflammatory | [19] |
Hesperidin (Hesperetin 7-O-rutinoside) | Anti-anxiety, antioxidant, neuroprotective. | [19] |
Triterpenoids | [19] | |
Ginsenoside | Antioxidant, anti-inflammatory | [19] |
Phenolic Acids | [19] | |
Chlorogenic Acid | Antioxidant, anti-inflammatory, antimicrobial. | [19] |
Caffeic Acid | Antioxidant | [19] |
Protocatechuic Acid | Antioxidant and anti-inflammatory | [19] |
Glycosides | ||
Saponins | Antiallergic, anticancer, antiviral, neuroprotective | [35] |
Cyanogenic Acids | Anxiolytic, antioxidant, anticancer | [24] |
Bioactivity | Source (Type) of Extract | Method of Obtention | Experimental Method | Results | References |
---|---|---|---|---|---|
Antioxidant activity | 100 mg/mL methanolic leaf extract | DPPH (% of inhibition) | In vitro | 90.68 ± 2.11% | [23] |
ABTS (% of inhibition) | 53.11 ± 2.66% | ||||
Reducing power (% of reduction) | 72.23 ± 1.12% | ||||
NO (% of inhibition) | 69.0 ± 3.97% | ||||
Ferric Reducing Power assay (% of inhibition) | 5.18 ± 2.2% | ||||
Fruit extract | ABTS (IC50) | In vivo | IC50 = 38.13 μg/mL | [19] | |
DPPH (IC50) | IC50 = 34.72 μg/mL | ||||
100 μg/mL extract | NO (% of inhibition) | 80.15% | |||
LPO (% of inhibition) | 77.85% | ||||
P. caerulea leaves (50% ethanolic extract) | (mM TE g−1) | In vitro | (mM TE g−1) | [17] | |
DPPH | 97.89 ± 5.45 | ||||
ABTS | 105.46 ± 3.60 | ||||
FRAP | 44.67 ± 2.50 | ||||
CUPRAC | 164.37± 8.28 | ||||
P. caerulea pulp (50% ethanolic extract) | DPPH | 29.74 ± 0.57 | |||
ABTS | 27.76 ± 0.80 | ||||
FRAP | 14.34 ± 0.06 | ||||
CUPRAC | 83.35 ± 0.09 | ||||
P. caerulea leaves (70% ethanolic extract) | DPPH (IC50) | In vitro | IC50 = 54.01 µg/mL | [9] | |
ABTS (µmol/g dw) | 79.77 ± 6.76 µmol/g dw | ||||
Diabetic + ethyl acetate fraction of P. caerulea leaves | Determination of glutathione in the blood of alloxan-induced diabetic rats (%) | In vivo | 71% potency relative to vitamin E | [23] | |
Anti-inflammatory activity | 800 mg/mL P. caerulea methanolic leaf extract | Antihaemolytic activity | In vitro | 61.05 ± 1.5% | [23] |
50% ethanol P. caerulea leaf extract (1.5 mg/mL); 70% ethanol leaf extract (1.9 mg mL−1); methanol leaf extract; 50% ethanol pulp extract; 70% ethanol pulp extract | Anti-denaturation assay (% of inhibition denaturation) | In vitro | 50% ethanol P. caerulea leaf extract—highest inhibition | [17] | |
Ethyl acetate fraction (100 mg/kg b. wt) | Hind-paw edema method | In vivo | 90% potency relative to indomethacin | [9] | |
Antibacterial activity against Escherichia coli Pseudomonas aeruginosa | 100–1000 µg/mL methanolic leaf extract | Agar diffusion assay | In vitro | 1000 µg/mL—highest inhibition | [23] |
10 mg/mL leaf extract (50% ethanolic extract) | Agar diffusion assay | In vitro | Inhibition zone, mm | [17] | |
Bacillus subtilis | 10.5 ± 0.71 | ||||
Bacillus cereus | 10.0 ± 0.00 | ||||
Enterococcus faecalis | 10.0 ± 0.00 | ||||
Salmonella enteritidis | 9.5 ± 0.71 | ||||
Escherichia. coli | 9.0 ± 0.00 | ||||
Pseudomonas aeruginosa | 9.0 ± 0.00 | ||||
Methanolic leaf callus extracts of P. caerulea (1 mg/disk) | Agar diffusion method | In vitro | Zone of inhibition, mm | [40] | |
Bacillus cereus | 8.00 | ||||
Salmonella typhi | – | ||||
Pseudomonas aruginosa | 7.00 | ||||
Streptococcus epidermis | – | ||||
E. coli | 7.00 | ||||
Anti-breast cancer activity | Methanolic leaf extract | MTT assay | In vitro | IC50 = 50.22 µg/mL | [23] |
Acetylcholinesterase activity | Fruit extracts | Method of Ellmam | In vivo | Enzyme activity—0.35 ± 0.86 μmol/min/mg protein | [19] |
Anticonvulsant activity | P. caerulea fruits 100 and 200 mg/kg | – | In vivo | Able to halt the development and precipitation of seizures | [19] |
Ethanol leaf extract (100 mg/kg b. wt) | Frequency pulse shock | In vivo | 63% potency relative to carbamazepine | [9] | |
Analgesic activity | Ethyl acetate fraction of leaf extract (100 mg/kg b. wt) | Writhing test induced by acetic acid | In vivo | 49.1% potency relative to indomethacin | [9] |
Antipyretic activity | Ethanol leaf extract (100 mg/kg b. wt) | - | In vivo | 90% potency relative to paracetamol | [9] |
Spasmolytic activity | Passiflora leaf extract | - | In vivo | 76.25% potency relative to control | [22] |
Patent/Medicine | Description | References |
---|---|---|
| ||
| This beverage features a blend of Passiflora caerulea juice, honey peach juice, honey and water. The use of enzymatic treatment effectively preserved the unique flavors of each fruit, resulting in a natural and lasting taste experience. | [60] |
| A particular tomato sauce is created by blending Passiflora caerulea with tomatoes without adding any sugars. | [61] |
| ||
| A technique for producing preserved products from Passiflora caerulea. | [62] |
| ||
| A formulation designed to prevent, alleviate or treat sleep disorders. | [63] |
| A formulation designed to alleviate, prevent or treat neurological disorders such as hypnosis and forgetfulness. | [64] |
| Phytotherapeutic capsules that combine two herbal extracts: Melissa officinalis and Passiflora caerulea. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garmidolova, A.; Halkoglu-Hristova, P.; Georgiev, V. Exploring the Multifunctionality of Passiflora caerulea L.: From Traditional Remedies to Modern Applications. Appl. Sci. 2025, 15, 3251. https://doi.org/10.3390/app15063251
Garmidolova A, Halkoglu-Hristova P, Georgiev V. Exploring the Multifunctionality of Passiflora caerulea L.: From Traditional Remedies to Modern Applications. Applied Sciences. 2025; 15(6):3251. https://doi.org/10.3390/app15063251
Chicago/Turabian StyleGarmidolova, Alexandra, Pervin Halkoglu-Hristova, and Vasil Georgiev. 2025. "Exploring the Multifunctionality of Passiflora caerulea L.: From Traditional Remedies to Modern Applications" Applied Sciences 15, no. 6: 3251. https://doi.org/10.3390/app15063251
APA StyleGarmidolova, A., Halkoglu-Hristova, P., & Georgiev, V. (2025). Exploring the Multifunctionality of Passiflora caerulea L.: From Traditional Remedies to Modern Applications. Applied Sciences, 15(6), 3251. https://doi.org/10.3390/app15063251