Changes in Bacterial Flora and Quality of Yellowtail (Seriola quinqueradiata) Muscle Stored at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. VCCs
2.3. Determination of TVB-N, TMA, and TBARS Values
2.4. Sensory Evaluation
2.5. DNA Extraction, PCR, and NGS
2.6. Analysis of Sequencing Data
2.7. Determination of VOCs
2.8. Statistical Analysis
3. Results and Discussion
3.1. VCC
3.2. TMA, TVB-N, and TBARS
3.3. Sensory Evaluation
3.4. NGS Analysis
3.5. Changes in VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | Dark muscle |
SC | Super-chilled |
VOC | Volatile organic compound |
OM | Ordinary muscle |
TMA | Trimethylamine |
NGS | Next-generation sequencing |
VCC | Visible colony count |
TVB-N | Total volatile basic nitrogen |
TBARS | Thiobarbituric acid reactive substances |
CFU | Colony-forming unit |
TCA | Trichloroacetic acid |
HCA | Hierarchical clustering analysis |
PCoA | Principal coordinate analysis |
PCA | Principal component analysis |
References
- Yu, D.; Wu, L.; Regenstein, J.M.; Jiang, Q.; Yang, F.; Xu, Y.; Xia, W. Recent advances in quality retention of non-frozen fish and fishery products: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Sandria, G.; Chen, F.C.; Chambers, E.; Coppings, R.; Chambers, D.H. A comprehensive evaluation of temperatures within home refrigerators. J. Food Sci. 2007, 4, 275–283. [Google Scholar]
- Evans, J.A. Effects of food and beverage storage, distribution, display, and consumer handling on shelf life. J. Food Sci. 2011, 7, 107–140. [Google Scholar] [CrossRef]
- Ge, L.; Xu, Y.; Xia, W.; Jiang, Q.; Jiang, X. Differential role of endogenous cathepsin and microorganism in texture softening of ice-stored grass carp (Ctenopharyngodon idella) fillets. J. Sci. Food. Agri. 2016, 96, 3233–3239. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; You, Y.; Yong, K.H.; Li, Y.; Jun, S. Impact of supercooling storage on physical and chemical properties of yellowfin tuna (Thunnus albacares). J. Food Eng. 2023, 373, 111818. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M.; Rustad, T.; Kolsaker, K. Superchilling of food: A review. J. Food Eng. 2011, 107, 141–146. [Google Scholar] [CrossRef]
- Magnussen, O.M.; Haugland, A.; Hemmingsen, A.K.T.; Johansen, S.; Nordtvedt, T.S. Advances in superchilling of food–process characteristics and product quality. Trends Food Sci. Technol. 2008, 19, 418–424. [Google Scholar] [CrossRef]
- Wu, T.; Wang, M.; Wang, P.; Tian, H.; Zhan, P. Advances in the formation and control methods of undesirable flavors in fish. Foods 2022, 11, 2504. [Google Scholar] [CrossRef]
- Tanimoto, S.; Shimoda, M. Changes in volatile compounds of dark and ordinary muscles of yellowtail (Seriola quinqueradiata) during short-term cold storage. J. Aquat. Food Prod. Technol. 2016, 25, 185–196. [Google Scholar] [CrossRef]
- Tanimoto, S.; Kikutani, H.; Kitabayashi, K.; Ohkita, T.; Arita, R.; Nishimura, S.; Takemoto, R.; Mabuchi, R.; Shimoda, M. Qualitative changes in each part of yellowtail (Seriola quinqueradiata) flesh during cold storage. Fish Sci. 2018, 84, 135–148. [Google Scholar] [CrossRef]
- Mayo, B.; Rachid, C.T.C.C.; Alegría, Á.; Leite, A.M.O.; Peixoto, R.S.; Delgado, S. Impact of next generation sequencing techniques in food microbiology. Curr. Genom. 2014, 15, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, D.A.; Parlapani, F.F.; Boziaris, I.S. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci. Technol. 2022, 120, 236–247. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.A.; Boziaris, I.S. Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate uninoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT-Food Sci. Technol. 2017, 78, 54–62. [Google Scholar] [CrossRef]
- Parlapani, F.F. Microbial diversity of seafood. Curr. Opin. Food Sci. 2021, 37, 45–51. [Google Scholar] [CrossRef]
- Production Statistics of The Fishery and Aquaculture Industries for 2020, Ministry of Agriculture, Forestry and Fisheries, Japan. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00500216&tstat=000001015174&cycle=7&year=20220&month=0&tclass1=000001015175&tclass2=000001214760 (accessed on 24 February 2025).
- Tanimoto, S.; Hirata, Y.; Ishizu, S.; Wang, R.; Furuta, A.; Mabuchi, R.; Okada, G. Changes in the quality and microflora of yellowtail (Seriola quinqueradiata) muscles during cold storage. Foods 2024, 13, 1086. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Gardner, G.A. Streptomycin-thallous acetate-actidione (STAA) agar, a medium for the selective enumeration of Brochothrix thermosphacta. Int. J. Food Microbiol. 1985, 2, 69–70. [Google Scholar] [CrossRef]
- Shewan, J.M.; Hobbs, G.; Hodgkiss, W. The Pseudomonas and Achromobacter groups of bacteria in the spoilage of marine white fish. J. Appl. Microbiol. 1960, 23, 463–468. [Google Scholar] [CrossRef]
- Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Microbial spoilage of foods: Fundamentals. Food Microbiol. 2017, 1–21. [Google Scholar] [CrossRef]
- Nangulohi, M.N.; Shikongo-Nambabi, N.; Shoolongela, A.; Schneider, M. Control of bacterial contamination during marine fish processing. J. Biol. Life Sci. 2011, 3, 1–10. [Google Scholar] [CrossRef]
- Conway, E.J. Microdiffusion analysis and volumetric error. Nature 1948, 161, 583. [Google Scholar] [CrossRef]
- Wang, R.; Ishizu, S.; Kondo, M.; Furuta, A.; Okada, G.; Tanimoto, S. Changes in quality and bacterial flora of red sea bream (Pagrus major) flesh during ice storage. Food Sci. Technol. Res. 2024, 30, 599–611. [Google Scholar] [CrossRef]
- Kitabayashi, K.; Tanimoto, S.; Kikutani, H.; Ohkita, T.; Mabuchi, R.; Shimoda, M. Effect of nitrogen gas packaging on odor development in yellowtail (Seriola quinqueradiata) muscle during ice storage. Fish. Sci. 2019, 85, 247–257. [Google Scholar] [CrossRef]
- Wang, R.; Hirabayashi, M.; Furuta, A.; Okazaki, T.; Tanimoto, S. Changes in extractive components and bacterial flora in live mussels (Mytilus galloprovincialis) during storage at different temperatures. J. Food Sci. 2023, 88, 1654–1671. [Google Scholar] [CrossRef]
- Regueira-Iglesias, A.; Balsa-Castro, C.; Blanco-Pintos, T.; Tomás, I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol. 2023, 38, 347–399. [Google Scholar] [CrossRef]
- Calle, M.L. Statistical analysis of metagenomics data. Genomics Inform. 2019, 17, e6. [Google Scholar] [CrossRef]
- Zhang, Z.; Murtagh, F.; Van Poucke, S.; Lin, S.; Lan, P. Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R. Ann. Transl. Med. 2017, 5, 75. [Google Scholar] [CrossRef]
- Mukojima, K.; Yoshii, M.; Nakashio, A.; Mabuchi, R.; Furuta, A.; Tanimoto, S. Effect of vacuum packing on the odor of yellowtail (Seriola quinqueradiata) flesh stored after heating. Fish. Sci. 2023, 89, 709–721. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Mohammad, N.; Behrooz, A.B.; Ioannis, K.K. Volatilomic with chemometrics: A toward authentication approach. Eur. Food Res. Technol. 2023, 249, 2215–2226. [Google Scholar] [CrossRef]
- Zhong, H.; Wei, S.; Kang, M.; Sun, Q.; Xia, Q.; Wang, Z.; Han, Z.; Liu, Y.; Liu, M.; Liu, S. Effects of different storage condtions on microbial community and quality changes of greater amberjack (Seriola dumerili) fillets. LWT 2023, 179, 114640. [Google Scholar] [CrossRef]
- Park, D.H.; Lee, S.; Byeon, Y.M.; Kim, E.J.; Choi, M.J. Effect of supercooling storage applied with stepwise algorithm for fishes (salmon and olive flounder) and its freshness during extended storage. Food Biosci. 2022, 49, 101950. [Google Scholar] [CrossRef]
- Koseki, S.; Kitakami, S.; Kato, N.; Arai, K. Changes in stiffness and freshness (k value) of seafood after death. J. Sch. Mar. Sci. Technol. Tokai Univ. 2006, 4, 31–46. [Google Scholar]
- Sharifian, S.; Zakipour, E.; Mortazavi, M.S.; Arshadi, A. Quality assessment of tiger tooth croaker (Otolithes ruber) during ice storage. Int. J. Food Prop. 2011, 14, 309–318. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 8 March 1995 fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. Off. J. Eur. Communities 1995, 97, 84–87. [Google Scholar]
- Prabhakar, P.K.; Srivastav, P.P.; Pathak, S.S. Kinetics of Total Volatile Basic Nitrogen and Trimethylamine Formation in Stored Rohu (Labeo rohita) Fish. J. Aquat. Food Prod. Technol. 2019, 28, 452–464. [Google Scholar] [CrossRef]
- Qiu, H.; Guo, X.; Deng, X.; Guo, X.; Mao, X.; Xu, C.; Zhang, J. The influence of endogenous cathepsin in different subcellular fractions on the quality deterioration of northern pike (Esox lucius) fillets during refrigeration and partial freezing storage. Food Sci. Biotechnol. 2020, 29, 1331–1341. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, S.G.; Lin, H.M. Changes in the physicochemical and volatile flavor characteristics of Scomberomorus ni-phnius during chilled and frozen storage. Food Sci. Technol. Res. 2012, 18, 747–754. [Google Scholar] [CrossRef]
- Banerjee, R.; Maheswarappa, N.B. Superchilling of muscle foods: Potential alternative for chilling and freezing. Crit. Rev. Food Sci. Nutr. 2019, 59, 1256–1263. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Petros, S.; Taoukis, P.S. Effect of storage temperature and osmotic pre-treatment with alternative solutes on the shelf-life of gilthead seabream (Sparus arata) fillets. Aquacult. Fish. 2017, 2, 39–47. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Magdy, M. Metabarcoding profiling of microbial diversity associated with trout fish farming. Sci. Rep. 2021, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Clols-Fuentes, J.; Nguinkal, J.A.; Unger, P.; Kreikemeyer, B.; Palm, H.W. Bacterial community in african catfish (Clarias gariepinus) recirculating aquaculture systems under different stocking densities. Front. Mar. Sci. 2023, 10, 234. [Google Scholar] [CrossRef]
- Xia, J.; Jiang, N.; Zhang, B.; Sun, R.; Zhu, Y.; Xu, W.; Ma, Y. Bacterial changes in boiled crayfish between different storage periods and characterizations of the specific spoilage bacteria. Foods 2023, 12, 3006. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Georgalaki, M.; Anastasiou, R.; Alexandropoulou, A.-M.; Manolopoulou, E.; Zoumpopoulou, G.; Tsakalidou, E. Study of the microbiome of the cretan sour cream staka using amplicon sequencing and shotgun metagenomics and isolation of novel strains with an important antimicrobial potential. Foods 2024, 13, 1129. [Google Scholar] [CrossRef]
- Lindberg, A.M.; Ljungh, Å.; Ahrne, S.; Löfdahl, S.; Molin, G. Enterobacteriaceae found in high numbers in fish, minced meat and pasteurised milk or cream and the presence of toxin encoding genes. Int. J. Food Microbiol. 1998, 39, 11–17. [Google Scholar] [CrossRef]
- Vogel, B.F.; Venkateswaran, K.; Satomi, M.; Gram, L. Identification of Shewanella baltica as the most important h2s-producing species during iced storage of danish marine fish. Appl. Environ. Microbiol. 2005, 71, 6689–6697. [Google Scholar] [CrossRef]
- Chaillou, S.; Chaulot-Talmon, A.; Caekebeke, H.; Cardinal, M.; Christieans, S.; Denis, C.; Desmonts, M.; Dousset, X.; Feurer, C.; Hamon, E.; et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J. 2014, 9, 1105–1118. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Nasi, A.; Ferranti, P.; Villani, F. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 2009, 75, 1990–2001. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Parlapani, F.F.; Mallouchos, A.; Angelidou, A.; Syropoulou, F.; Minos, G.; Boziaris, I.S. Volatile organic compounds and 16s metabarcoding in ice-stored red seabream (Pagrus major). Foods 2022, 11, 666. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Michailidou, S.; Anagnostopoulos, D.A.; Sakellariou, A.; Pasentsis, K.; Psomopoulos, F.; Argiriou, A.; Haroutounian, S.A.; Boziaris, I.S. Microbial spoilage investigation of thawed common cuttlefish (Sepia officinalis) stored at 2 °C using next generation sequencing and volatilome analysis. Food Microbiol. 2018, 76, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Jingbin, Z.; Sijia, S.; Dongping, L.; Yongkang, L. Microbial communities and biogenic amines of crucian carp (Carassius auratus) fillets during partial freezing and chilled storage. Int. J. Food Prop. 2017, 20, 1053–1064. [Google Scholar] [CrossRef]
- Ivanova, A.A.; Mullaeva, S.A.; Sazonova, O.I.; Petrikov, K.V.; Vetrova, A.A. Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus pseudomonas. Folia Microbiol. 2022, 67, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Parlapani, F.F.; Meziti, A.; Kormas, K.A.; Boziaris, I.S. Indigenous and spoilage microbiota of farmed sea bream stored in ice identified by phenotypic and 16s RNA gene analysis. Food Microbiol. 2013, 33, 85–89. [Google Scholar] [CrossRef]
- Tahiluddin, A.B.; Maribao, I.; Amlani, M.; Sarri, J.H. A review on spoilage microorganisms in fresh and processed aquatic food products. Food Bull. 2022, 10, 245–257. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Jones, D. The Genus Brochothrix. In The Prokaryotes: A Handbook on the Biology of Bacteria; Dworkin, M., Ed.; Springer: Berlin, Germany, 2006; Volume 3, pp. 861–872. [Google Scholar] [CrossRef]
- Wong, J.X.; Ramli, S.; Son, R. A review: Characteristics and prevalence of psychrotolerant food spoilage bacteria in chill-stored meat, milk and fish. Food Res. 2023, 7, 215–226. [Google Scholar] [CrossRef]
- Zotta, T.; Parente, E.; Ianniello, R.G.; De Filippis, F.; Ricciardi, A. dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. Int. J. Food Microbiol. 2019, 293, 102–113. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of lipids in food flavor generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
- Zhuang, S.; Hong, H.; Zhang, L.; Luo, Y. Spoilage-related microbiota in fish and crustaceans during storage: Research progress and future trends. Compr. Rev. Food Sci. Food Saf. 2021, 20, 252–288. [Google Scholar] [CrossRef]
- Audrain, B.; Farag, M.A.; Ryu, C.M.; Ghigo, J.M. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 2015, 39, 222–233. [Google Scholar] [CrossRef]
- Hu, S.P.; Pan, B.S. Modification of fish oil aroma using a macroalgal lipoxygenase. J Amer. Oil Chem. Soc. 2000, 77, 343–348. [Google Scholar] [CrossRef]
- Lin, H.; Xue, C.H.; Li, Z.J.; Lou, W.F.; Chen, X.B. Studies on the volatile compounds of spoiled yellowtail (Seriola aureovittata) during storage. Period. Ocean Univ. China 1995, 25, 474–480. [Google Scholar]
Muscle Type | 0 Day | 3 °C | 0 °C | −3 °C | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Periods (Days) | Storage Periods (Days) | Storage Periods (Days) | ||||||||||||||||||||||||||
3 | 6 | 10 | 14 | 3 | 7 | 14 | 21 | 7 | 17 | 27 | 37 | 50 | ||||||||||||||||
Mesophilic bacteria | OM | 2.6 | 2.6 | 2.8 | 6.9 | * | 8.0 | * | 2.6 | 4.7 | * | 6.0 | * | 8.0 | * | 3.9 | 3.9 | 5.2 | * | 6.0 | * | 8.6 | * | |||||
DM | 2.7 | 2.9 | 3.2 | 6.5 | * | 8.0 | * | 2.7 | 5.4 | * | 5.3 | * | 7.4 | * | 3.7 | 4.1 | * | 4.7 | * | 5.4 | * | 8.2 | * | |||||
Brochothrix thermosphacta | OM | 2.6 | 0.4 | * | 0.7 | * | 4.4 | * | 5.3 | * | 0.0 | * | 2.0 | † | 3.4 | 4.6 | * | 2.3 | 1.5 | 3.0 | 2.2 | 4.0 | ||||||
DM | 2.4 | 0.0 | * | 0.7 | * | 3.6 | 4.5 | * | 0.0 | * | 3.1 | 2.9 | 4.6 | * | 2.3 | 1.8 | 1.9 | 2.5 | 3.7 | |||||||||
Lactic acid bacteria | OM | 0.0 | 0.8 | 0.0 | 0.0 | 0.3 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | |||||||||||||
DM | 0.0 | 2.0 | * | 0.0 | 0.0 | 2.1 | * | 1.1 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.9 | 1.4 | ||||||||||||
Enterobacteriaceae | OM | 0.0 | 0.0 | 1.3 | * | 6.4 | * | 7.8 | * | 0.5 | 3.0 | *† | 3.8 | * | 7.5 | * | 2.4 | * | 1.9 | * | 3.7 | * | 5.6 | * | 7.2 | * | ||
DM | 0.0 | 1.9 | 1.6 | 5.7 | * | 7.4 | * | 1.8 | * | 4.5 | * | 3.9 | * | 6.5 | * | 2.7 | * | 2.1 | * | 3.3 | * | 5.2 | * | 7.2 | * | |||
Aeromonas spp. | OM | 0.7 | 2.9 | * | 3.9 | * | 7.1 | * | 8.3 | * | 2.5 | * | 4.8 | * | 6.8 | * | 8.2 | * | 3.4 | * | 3.9 | * | 5.3 | * | 6.4 | * | 7.8 | * |
DM | 0.0 | 2.7 | * | 3.6 | * | 6.5 | * | 8.2 | * | 2.2 | * | 5.7 | * | 6.1 | * | 7.5 | * | 3.5 | * | 3.7 | * | 4.7 | * | 6.3 | * | 7.5 | * | |
Marine bacteria | OM | 0.9 | 2.8 | * | 3.9 | * | 6.7 | * | 8.2 | * | 2.4 | 4.1 | * | 6.3 | * | 7.8 | *† | 2.5 | 3.9 | * | 5.0 | * | 5.9 | * | 7.4 | * | ||
DM | 1.6 | 3.0 | 4.1 | * | 6.2 | * | 8.0 | * | 2.6 | 5.5 | * | 5.3 | * | 7.1 | * | 3.6 | 3.8 | 4.4 | * | 5.0 | * | 6.9 | * | |||||
Pseudomonas spp. | OM | 0.0 | 1.8 | 3.5 | * | 6.3 | * | 7.7 | * | 2.5 | * | 6.0 | * | 5.3 | * | 7.4 | * | 3.7 | * | 3.9 | * | 4.5 | * | 5.3 | * | 8.0 | * | |
DM | 1.8 | 3.4 | * | 3.4 | * | 6.5 | * | 7.6 | * | 3.1 | 6.6 | * | 4.8 | * | 6.6 | * | 3.4 | * | 4.1 | * | 4.3 | * | 5.7 | * | 7.5 | * | ||
H2S producing bacteria | OM | 0.0 | 0.8 | 0.7 | 2.0 | 5.0 | * | 0.0 | 0.0 | 4.5 | * | 3.5 | * | 0.0 | 0.0 | 2.0 | 0.9 | 1.8 | ||||||||||
DM | 0.0 | 0.0 | 0.8 | 4.2 | * | 5.1 | * | 0.0 | 0.6 | 3.9 | * | 3.3 | * | 0.0 | 0.9 | 0.7 | 0.8 | 1.1 |
Muscle Type | 3 °C | 0 °C | −3 °C | |
---|---|---|---|---|
Mesophilic | OM | 1.50 | 0.64 | 0.32 |
bacteria | DM | 1.38 | 0.51 | 0.28 |
Brochothrix thermosphacta | OM | 1.34 | 0.55 | 0.32 |
DM | 1.11 | 0.44 | 0.18 | |
Enterobacteriaceae | OM | 1.77 | 0.78 | 0.37 |
DM | 1.66 | 0.62 | 0.37 | |
Aeromonas spp. | OM | 1.27 | 0.81 | 0.30 |
DM | 1.34 | 0.76 | 0.30 | |
Marine bacteria | OM | 1.22 | 0.74 | 0.28 |
DM | 1.06 | 0.55 | 0.21 | |
Pseudomonas spp. | OM | 1.31 | 0.69 | 0.30 |
DM | 0.97 | 0.44 | 0.23 | |
H2S producing bacteria | OM | 1.24 | 0.58 | 0.05 |
DM | 1.17 | 0.44 | 0.09 |
Muscle Type | 0 Day | 3 °C | 0 °C | −3 °C | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Periods (Day) | Storage Periods (Days) | Storage Periods (Days) | |||||||||||||||||||||||||||
3 | 6 | 10 | 14 | 3 | 7 | 14 | 21 | 7 | 17 | 27 | 37 | 50 | |||||||||||||||||
TVBN (mg/100 g) | OM | 15.5 | † | 16.2 | 16.2 | 17.7 | 20.3 | * | 16.2 | 17.1 | 17.1 | 17.1 | † | 16.3 | 17.1 | 16.9 | 17.2 | † | 19.7 | *† | |||||||||
DM | 12.1 | 16.1 | * | 16.0 | * | 19.6 | * | 22.0 | * | 14.8 | 15.4 | 20.6 | * | 21.8 | * | 15.4 | 18.8 | 23.1 | * | 24.6 | * | 25.1 | * | ||||||
TMA (μg/g) | OM | 0.50 | † | 2.10 | † | 3.80 | *† | 5.40 | *† | 16.70 | *† | 2.60 | † | 2.90 | † | 9.50 | *† | 15.30 | *† | 1.90 | † | 5.70 | † | 9.70 | *† | 11.9 | *† | 20.5 | *† |
DM | 22.6 | 45.8 | 82.1 | * | 92.6 | * | 126.9 | * | 37.9 | 72.2 | * | 95.9 | * | 93.8 | * | 68.4 | 81.6 | * | 87.9 | * | 88.1 | * | 81.8 | * | |||||
TBARS (μmol/g) | OM | 0.006 | † | 0.004 | † | 0.01 | *† | 0.009 | *† | 0.014 | *† | 0.005 | † | 0.008 | *† | 0.013 | *† | 0.021 | *† | 0.007 | † | 0.014 | † | 0.015 | * | 0.015 | *† | 0.022 | *† |
DM | 0.176 | 0.27 | 0.547 | * | 0.703 | * | 0.826 | * | 0.278 | * | 0.613 | * | 0.701 | * | 0.654 | * | 0.512 | 0.776 | * | 0.84 | * | 0.665 | * | 0.782 | * |
Muscle Type | 0 Day | 3°C | 0°C | −3 °C | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Periods (Day) | Storage Periods (Days) | Storage Periods (Days) | ||||||||||||||||||||||||||
3 | 6 | 10 | 14 | 3 | 7 | 14 | 21 | 7 | 17 | 27 | 37 | 50 | ||||||||||||||||
Rancidity | OM | 1.4 | 1.4 | 1.8 | * | 1.9 | * | 2.4 | * | 1.4 | 1.7 | 2.3 | * | 2.4 | * | 1.7 | 2.0 | * | 2.2 | * | 2.3 | * | 2.7 | * | ||||
DM | 1.5 | 1.6 | 2.0 | 2.3 | * | 2.5 | * | 1.6 | 2.2 | * | 2.6 | * | 2.5 | * | 1.9 | 2.3 | * | 2.3 | * | 2.4 | * | 2.4 | * | |||||
Odor intensity | OM | 1.4 | 1.5 | 2.1 | * | 2.4 | * | 2.9 | * | 1.7 | 2.1 | 3.0 | * | 2.9 | * | 2.0 | 2.7 | * | 3.3 | * | 3.1 | * | 3.1 | * | ||||
DM | 2.4 | 2.6 | 3.2 | 3.5 | 3.8 | * | 2.8 | 3.5 | * | 4.1 | * | 4.0 | * | 3.1 | 3.6 | * | 3.7 | * | 3.6 | * | 3.9 | * |
Muscle Type | 0 Day | 3 °C | 0 °C | −3 °C | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Periods (Days) | Storage Periods (Days) | Storage Periods (Days) | ||||||||||||||||||||||||||
3 | 6 | 10 | 14 | 3 | 7 | 14 | 21 | 7 | 17 | 27 | 37 | 50 | ||||||||||||||||
Observed OTUs | OM | 117.0 | 73.0 | * | 66.3 | * | 26.3 | * | 25.0 | * | 65.3 | * | 42.7 | * | 28.7 | * | 23.0 | * | 60.7 | * | 76.0 | * | 46.0 | * | 27.3 | * | 21.0 | * |
DM | 121.0 | 74.7 | 60.7 | * | 26.3 | * | 22.0 | * | 80.7 | 34.0 | * | 37.3 | * | 21.7 | * | 82.0 | 69.3 | 50.7 | * | 33.3 | * | 18.3 | * | |||||
Shannon | OM | 5.43 | 5.25 | 4.66 | 3.54 | * | 2.89 | * | 5.27 | 3.75 | * | 3.34 | * | 3.19 | * | 3.70 | * | 4.73 | 3.82 | * | 3.21 | * | 2.71 | * | ||||
DM | 5.15 | 4.79 | 4.11 | 3.29 | * | 2.97 | * | 5.34 | 3.55 | * | 3.41 | * | 3.12 | * | 4.94 | 4.37 | 3.41 | 3.05 | * | 2.53 | * | |||||||
Chao1 | OM | 119.0 | 73.7 | * | 67.0 | * | 26.7 | * | 25.0 | * | 65.3 | * | 43.3 | * | 29.3 | * | 23.3 | * | 61.7 | * | 76.7 | * | 48.0 | * | 29.0 | * | 21.3 | * |
DM | 125.0 | 75.3 | 61.7 | * | 27.0 | * | 22.3 | * | 80.7 | 34.7 | * | 38.0 | * | 22.3 | * | 83.3 | 72.7 | 52.0 | * | 34.7 | * | 18.7 | * | |||||
ACE | OM | 119.0 | 74.1 | * | 67.1 | * | 26.7 | * | 25.0 | * | 65.3 | * | 43.3 | * | 29.3 | * | 23.3 | * | 61.7 | * | 76.7 | * | 48.1 | * | 29.0 | * | 21.3 | * |
DM | 125.0 | 75.3 | 61.7 | * | 27.0 | * | 22.3 | * | 80.7 | 34.7 | * | 38.0 | * | 22.3 | * | 83.3 | 72.7 | 52.0 | * | 34.7 | * | 18.7 | * | |||||
Simpson | OM | 0.952 | 0.95 | 0.93 | 0.88 | 0.76 | * | 0.96 | 0.89 | 0.85 | * | 0.84 | * | 0.83 | 0.93 | 0.87 | 0.81 | 0.74 | * | |||||||||
DM | 0.926 | 0.93 | 0.87 | 0.84 | 0.8 | * | 0.96 | 0.88 | 0.83 | 0.83 | 0.94 | 0.92 | 0.77 | 0.8 | 0.72 | |||||||||||||
Goods Coverage (%) | OM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||||||||||||
DM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Ishizu, S.; Matsumoto, A.; Furuta, A.; Okada, G.; Tanimoto, S. Changes in Bacterial Flora and Quality of Yellowtail (Seriola quinqueradiata) Muscle Stored at Different Temperatures. Appl. Sci. 2025, 15, 2996. https://doi.org/10.3390/app15062996
Ji Y, Ishizu S, Matsumoto A, Furuta A, Okada G, Tanimoto S. Changes in Bacterial Flora and Quality of Yellowtail (Seriola quinqueradiata) Muscle Stored at Different Temperatures. Applied Sciences. 2025; 15(6):2996. https://doi.org/10.3390/app15062996
Chicago/Turabian StyleJi, Yajing, Shinta Ishizu, Akane Matsumoto, Ayumi Furuta, Genya Okada, and Shota Tanimoto. 2025. "Changes in Bacterial Flora and Quality of Yellowtail (Seriola quinqueradiata) Muscle Stored at Different Temperatures" Applied Sciences 15, no. 6: 2996. https://doi.org/10.3390/app15062996
APA StyleJi, Y., Ishizu, S., Matsumoto, A., Furuta, A., Okada, G., & Tanimoto, S. (2025). Changes in Bacterial Flora and Quality of Yellowtail (Seriola quinqueradiata) Muscle Stored at Different Temperatures. Applied Sciences, 15(6), 2996. https://doi.org/10.3390/app15062996