Mathematical Modeling and Biomechanical Analysis of a Derotation Plate for Treating Complex Hip Dysplasia
Abstract
:1. Introduction
- To design and manufacture a titanium derotation plate tailored to the anatomical and biomechanical demands of patients with Crowe type IV DDH;
- To evaluate the stress distribution, displacement, and safety factor of the derotation plate using finite element analysis;
- To compare the biomechanical performance of the derotation plate with conventional fixation methods, emphasizing its clinical relevance in reducing complications associated with subtrochanteric shortening osteotomy.
2. Materials and Methods
2.1. Model Development
2.2. Mathematical Modeling
2.3. Surgical Technique
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDH | Developmental Dysplasia of the Hip |
THA | Total Hip Arthroplasty |
FEA | Finite Element Analysis |
SSO | Subtrochanteric Shortening Osteotomy |
MPa | Megapascal |
CT | Computed Tomography |
SLA | Stereolithography |
CNC | Computer Numerical Control |
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
SSS | Stress–Strain State |
Appendix A
References
- Den, H.; Ito, J.; Kokaze, A. Epidemiology of Developmental Dysplasia of the HIP: Analysis of Japanese National Database. J. Epidemiol. 2021, 33, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Woodacre, T.; Ball, T.; Cox, P. Epidemiology of Developmental Dysplasia of the Hip within the UK: Refining the Risk Factors. J. Children’s Orthop. 2016, 10, 633–642. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Goiano, E.; Akkari, M.; Pupin, J.P.; Santili, C. The Epidemiology of Developmental Dysplasia of the Hip in Males. Acta Ortopédica Bras. 2020, 28, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Vafaee, A.R.; Baghdadi, T.; Baghdadi, A.; Jamnani, R.K. DDH Epidemiology Revisited: Do We Need New Strategies? Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5736894/ (accessed on 16 January 2025).
- Wenger, D.R.; Bomar, J.D. Historical Aspects of DDH. Indian J. Orthop. 2021, 55, 1360–1371. [Google Scholar] [CrossRef]
- Jawad, M.U.; Scully, S.P. In Brief: Crowe’s Classification: Arthroplasty in Developmental Dysplasia of the Hip. Clin. Orthop. Relat. Res. 2010, 469, 306–308. [Google Scholar] [CrossRef]
- Flanagin, B.A.; Dushey, C.H.; Rubin, L.E.; Keggi, K.J. Total Hip Arthroplasty Followed by Traction and Delayed Reduction for CROwe IV Developmental Dysplasia of the Hip. J. Arthroplast. 2013, 28, 1052–1054. [Google Scholar] [CrossRef]
- Park, C.-W.; Lim, S.-J.; Park, Y.-S. Modular StEms: Advantages and Current Role in Primary Total Hip Arthroplasty. Hip Pelvis 2018, 30, 147–155. [Google Scholar] [CrossRef]
- Kang, A.; Liang-Jia, D.; Bin, L.; Orgoi, S.; Dagvasumberel, G. Position and Stability of the Prosthesis in Severely Deformed DDH Artificial Total Hip Replacement. Cent. Asian J. Med. Sci. 2020, 6, 240–248. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Y.; Wang, L.; Ying, J.; Li, J.; Wang, F.; Qiu, X.; Zhang, T.; Ma, Z.; Zhang, Y.; et al. Integrated Acetabular Prosthesis versus Bone Grafting in Total Hip Arthroplasty for Crowe Type II and III Hip Dysplasia: A Retrospective Case–Control Study. Orthop. Surg. 2024, 16, 2401–2409. [Google Scholar] [CrossRef]
- Anzillotti, G.; Guazzoni, E.; Conte, P.; Di Matteo, V.; Kon, E.; Grappiolo, G.; Loppini, M. Using Three-Dimensional Printing Technology to Solve Complex Primary Total Hip Arthroplasty Cases: Do We Really Need Custom-Made Guides and Templates? A Critical Systematic Review on the Available Evidence. J. Clin. Med. 2024, 13, 474. [Google Scholar] [CrossRef]
- Zora, H.; Bayrak, G.; Bilgen, Ö.F. Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes. J. Clin. Med. 2025, 14, 509. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Brunello, M.; Pilla, F.; Geraci, G.; Stefanini, N.; Tassinari, L.; Di Martino, A. Femoral Head Autograft to Manage Acetabular Bone Loss Defects in THA for Crowe III Hips by DAA: Retrospective Study and Surgical Technique. J. Clin. Med. 2023, 12, 751. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Tassinari, L.; Pederiva, D.; Rossomando, V.; Brunello, M.; Pilla, F.; Geraci, G.; Traina, F.; Di Martino, A. Direct Anterior Approach in Total Hip Arthroplasty for Severe Crowe IV Dysplasia: Retrospective Clinical and Radiological Study. Medicina 2024, 60, 114. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.S.; Akhtar, M.; Razick, D.I.; Afzali, A.; Wilson, E.; Nedopil, A.J. Current Surgical Techniques in the Treatment of Adult Developmental Dysplasia of the Hip. J. Pers. Med. 2023, 13, 942. [Google Scholar] [CrossRef]
- Yang, T.-C.; Chen, C.-F.; Tsai, S.-W.; Chen, W.-M.; Chang, M.-C. Does Restoration of Hip Center with Subtrochanteric Osteotomy Provide Preferable Outcome for Crowe Type III–IV Irreducible Development Dysplasia of the Hip?? J. Chin. Med. Assoc. 2017, 80, 803–807. [Google Scholar] [CrossRef]
- Flecher, X.; Parratte, S.; Brassart, N.; Aubaniac, J.-M.; Argenson, J.-N. Evaluation of the Hip Center in Total Hip Arthroplasty for Old Developmental Dysplasia. J. Arthroplast. 2008, 23, 1189–1196. [Google Scholar] [CrossRef]
- Shen, J.; Sun, J.; Ma, H.; Du, Y.; Li, T.; Zhou, Y. High Hip Center Technique in Total Hip Arthroplasty for Crowe Type II–III Developmental Dysplasia: Results of Midterm Follow-up. Orthop. Surg. 2020, 12, 1245–1252. [Google Scholar] [CrossRef]
- Wen, X.; Zuo, J.; Liu, T.; Gao, Z.; Xiao, J. Bone Defect Map of the True Acetabulum in Hip Dysplasia (Crowe Type II and III) Based on Three-Dimensional Image Reconstruction Analysis. Sci. Rep. 2021, 11, 22955. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, D.; Jiang, M.; Qian, Q.; Li, H.; Tsai, T.-Y.; Zhang, J. Postoperative Hip Center Position Is Associated with Gait Symmetry in Range of Axial Rotation in Dysplasia Patients after THA. Front. Surg. 2023, 10, 1135327. [Google Scholar] [CrossRef]
- Qian, H.; Wang, X.; Wang, P.; Zhang, G.; Dang, X.; Wang, K.; Liu, R. Total Hip Arthroplasty in Patients with Crowe III/IV Developmental Dysplasia of the Hip: Acetabular Morphology and Reconstruction Techniques. Orthop. Surg. 2023, 15, 1468–1476. [Google Scholar] [CrossRef]
- Ciriello, V.; Saracco, M.; Leonardi, E.; Piovani, L.; Fetz-Palazola, A.; Mareno, C.; Logroscino, G. Mid-Term Outcomes of a Modern Zweymüller Monolithic Femoral Stem in Primary Total Hip Arthroplasty. Prosthesis 2023, 6, 53–62. [Google Scholar] [CrossRef]
- Berdini, M.; Procaccini, R.; Zanoli, G.F.; Faini, A.; Verdenelli, A.; Gigante, A. Influence of Femoral Stem Geometry on Total Hip Replacement: A Comparison of Clinical Outcomes of a Straight and an Anatomical Uncemented Stem. J. Clin. Med. 2024, 13, 6459. [Google Scholar] [CrossRef] [PubMed]
- Mauch, M.; Brecht, H.; Clauss, M.; Stoffel, K. Use of Short Stems in Revision Total Hip Arthroplasty: A Retrospective Observational Study of 31 Patients. Medicina 2023, 59, 1822. [Google Scholar] [CrossRef] [PubMed]
- Apostu, D.; Piciu, D.; Oltean-Dan, D.; Cosma, D.; Lucaciu, O.; Popa, C.; Mester, A.; Benea, H. How to Prevent Aseptic Loosening in Cementless Arthroplasty: A Review. Appl. Sci. 2022, 12, 1571. [Google Scholar] [CrossRef]
- Di Martino, A.; Capozzi, E.; Brunello, M.; D’Agostino, C.; Ramponi, L.; Panciera, A.; Ruta, F.; Faldini, C. When the Going Gets Tough: A Review of Total Hip Arthroplasty in Patients with Ipsilateral Above- and Below-Knee Amputation. Medicina 2024, 60, 1551. [Google Scholar] [CrossRef]
- Drobniewski, M.; Gonera, B.; Olewnik, Ł.; Borowski, A.; Ruzik, K.; Triantafyllou, G.; Borowski, A. Challenges and Long-Term Outcomes of Cementless Total Hip Arthroplasty in Patients Under 30: A 24-Year Follow-Up Study with a Minimum 8-Year Follow-Up, Focused on Developmental Dysplasia of the Hip. J. Clin. Med. 2024, 13, 6591. [Google Scholar] [CrossRef]
- Dragosloveanu, S.; Petre, M.-A.; Gherghe, M.E.; Nedelea, D.-G.; Scheau, C.; Cergan, R. Overall Accuracy of Radiological Digital Planning for Total Hip Arthroplasty in a Specialized Orthopaedics Hospital. J. Clin. Med. 2023, 12, 4503. [Google Scholar] [CrossRef]
- Yon, C.-J.; Lee, K.-J.; Choi, B.-C.; Suh, H.-S.; Min, B.-W. The Validation of Two-Dimensional and Three-Dimensional Radiographic Measurements of Host Bone Coverage in Total Hip Arthroplasty for Hip Dysplasia: A Comparison with Intra-Operative Measurements. J. Clin. Med. 2023, 12, 6227. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Liu, S.; Zhao, Y.; Mao, G.; Bian, W. Biomechanical Characteristics of the Femoral Isthmus during Total Hip Arthroplasty in Patients with Adult Osteoporosis and Developmental Dysplasia of the Hip: A Finite Element Analysis. Orthop. Surg. 2022, 14, 3019–3027. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Ying, J.; Xu, M.; Wei, Y.; Li, J.; Xie, H.; Zhao, D.; Cheng, L. Biomechanical Analysis and Clinical Observation of 3D-Printed Acetabular Prosthesis for the Acetabular Reconstruction of Total Hip Arthroplasty in Crowe III Hip Dysplasia. Front. Bioeng. Biotechnol. 2023, 11, 1219745. [Google Scholar] [CrossRef]
- Fu, M.; Xiang, S.; Zhang, Z.; Huang, G.; Liu, J.; Duan, X.; Yang, Z.; Wu, P.; Liao, W. The Biomechanical Differences of Rotational Acetabular Osteotomy, Chiari Osteotomy and Shelf Procedure in Developmental Dysplasia of Hip. BMC Musculoskelet. Disord. 2014, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-W.; Lim, S.-J.; Cha, Y.-T.; Park, Y.-S. Total Hip Arthroplasty with Subtrochanteric Shortening Osteotomy in Patients with High Hip Dislocation Secondary to Childhood Septic Arthritis: A Matched Comparative Study with CROwe IV Developmental Dysplasia. J. Arthroplast. 2019, 35, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, L.-L.; Wang, H.-Y.; Pei, F.-X.; Zhou, Z.-K. Long-Term Results of Cementless Total Hip Arthroplasty with Subtrochanteric Shortening Osteotomy in Crowe Type IV Developmental Dysplasia. J. Arthroplast. 2016, 32, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Yoon, P.W.; Kim, J.I.; Kim, D.O.; Yu, C.H.; Yoo, J.J.; Kim, H.J.; Yoon, K.S. Cementless Total Hip Arthroplasty for Patients with Crowe Type III or IV Developmental Dysplasia of the Hip: Two-Stage Total Hip Arthroplasty Following Skeletal Traction after Soft Tissue Release for Irreducible Hips. Clin. Orthop. Surg. 2013, 5, 167–173. [Google Scholar] [CrossRef]
- Lucchini, S.; Castagnini, F.; Perdisa, F.; Filardo, G.; Pardo, F.; Traina, F. Total Hip Arthroplasty for Low-Grade Developmental Hip Dysplasia Changes the Ipsilateral Knee Alignment on the Axial and Coronal Planes. J. Clinical Medicine 2023, 12, 7347. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, M.; Yang, M.; Guo, R.; Kong, X.; Chai, W. A Comparative Study of Three Different Fixation Methods after Subtrochanteric Shortening Osteotomy in Total Hip Arthroplasty for Crowe Type IV Developmental Dysplasia of the Hip. PubMed 2021, 35, 1519–1524. [Google Scholar] [CrossRef]
- Gong, S.; Xu, W.; Wang, R.; Liu, S.; Han, L.; Chen, G.; Wang, B. The Causes and Management of Nonunion of Femoral Subtrochanteric Shortening Osteotomy in a THA Patient: A Case Report. BMC Musculoskelet. Disord. 2019, 20, 203. [Google Scholar] [CrossRef]
- Mugnai, R.; Tarallo, L.; Capra, F.; Catani, F. Biomechanical Comparison between Stainless Steel, Titanium and Carbon-Fiber Reinforced Polyetheretherketone Volar Locking Plates for Distal Radius Fractures. Orthop. Traumatol. Surg. Res. 2018, 104, 877–882. [Google Scholar] [CrossRef]
- Muratli, K.S.; Karatosun, V.; Uzun, B.; Celik, S. Subtrochanteric Shortening in Total Hip Arthroplasty: Biomechanical Comparison of Four Techniques. J. Arthroplast. 2013, 29, 836–842. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Zhang, W.; Xu, C.; Xiong, D.; Li, J.; Zhang, L.; Tang, P. Evaluating the Biomechanical Performance of Ti6Al4V Volar Plates in Patients with Distal Radius Fractures. Front. Bioeng. Biotechnol. 2023, 11, 1141790. [Google Scholar] [CrossRef]
- Zeng, W.-N.; Liu, J.-L.; Wang, F.-Y.; Zhang, X.; Fan, H.-Q.; Chen, G.-X.; Guo, L.; Duan, X.-J.; Zhou, Q.; Yang, L. Total Hip Arthroplasty for Patients with Crowe Type IV Developmental Dysplasia of the Hip: Ten Years Results. Int. J. Surg. 2017, 42, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Davulcu, C.D.; Ozsahin, M.K.; Kayaalp, M.E.; Celayir, A.; Akbaba, D.; Unlu, M.C. Rectangular Femoral Stems Can Successfully Accommodate the Medullary Canal in Patients with Severe Hip Dysplasia Operated on with Total Hip Arthroplasty and a Shortening Osteotomy: A Morphometric Study. Acta Orthop. Belg. 2024, 90, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Van Stralen, R.A.; Colo, E.; Rutz, E.; Schreurs, B.W.; Hosman, A.J.F. Long-Term Results after Salter Innominate Osteotomy for the Treatment of Developmental Dysplasia of the Hip—Only 8% Rate of Total Hip Arthroplasty at a Median Follow-Up of 22 Years. Children 2024, 11, 1525. [Google Scholar] [CrossRef] [PubMed]
- Presedo, A.; Rutz, E.; Howard, J.J.; Shrader, M.W.; Miller, F. The Etiology of Neuromuscular Hip Dysplasia and Implications for Management: A Narrative Review. Children 2024, 11, 844. [Google Scholar] [CrossRef]
- Atalar, H.; Baymurat, A.C.; Kaya, İ.; Tokgöz, M.A.; Tolunay, T.; Arikan, Ş.M. Total Hip Arthroplasty in Patients with Coxarthrosis Due to Developmental Dysplasia of the Hip: Is Fixation of the Subtrochanteric Osteotomy Necessary? Jt. Dis. Relat. Surg. 2023, 34, 605–612. [Google Scholar] [CrossRef]
- Jeong, B.C.; Goh, T.S.; Lee, C.; Ahn, T.Y.; Ryu, D. Identification of Screw Spacing on Pediatric Hip Locking Plate in Proximal Femoral Osteotomy. Phys. Eng. Sci. Med. 2023, 46, 1101–1114. [Google Scholar] [CrossRef]
- Incze-Bartha, Z.; Incze-Bartha, S.; Simon-Szabó, Z.; Feier, A.M.; Vunvulea, V.; Nechifor-Boila, A.I.; Pastorello, Y.; Denes, L. Finite Element Analysis of Various Osteotomies Used in the Treatment of Developmental Hip Dysplasia in Children. J. Pers. Med. 2024, 14, 189. [Google Scholar] [CrossRef]
- Masson, J.-B.; Foissey, C.; Bertani, A.; Pibarot, V.; Rongieras, F. Transverse Subtrochanteric Shortening Osteotomy with Double Tension-Band Fixation during THA for Crowe III-IV Developmental Dysplasia: 12-Year Outcomes. Orthop. Traumatol. Surg. Res. 2023, 109, 103684. [Google Scholar] [CrossRef]
- Trisolino, G.; Menozzi, G.C.; Depaoli, A.; Schmidt, O.S.; Ramella, M.; Viotto, M.; Todisco, M.; Mosca, M.; Rocca, G. In Situ Fixation and Intertrochanteric Osteotomy for Severe Slipped Capital Femoral Epiphysis Following Femoral Neck Fracture: A Case Report with Application of Virtual Surgical Planning and 3D-Printed Patient-Specific Instruments. J. Pers. Med. 2025, 15, 13. [Google Scholar] [CrossRef]
- Bini, F.; Pica, A.; Marinozzi, A.; Marinozzi, F. Prediction of Stress and Strain Patterns from Load Rearrangement in Human Osteoarthritic Femur Head: Finite Element Study with the Integration of Muscular Forces and Friction Contact. In Lecture Notes in Computational Vision and Biomechanics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 49–64. [Google Scholar] [CrossRef]
Material | Elasticity Modulus (MPa) | Poisson Ratio |
---|---|---|
Cortical bone | 15,000 | 0.3 |
Spongy bone | 1000 | 0.3 |
Plate, prosthesis, screws (titanium) | 110,000 | 0.3 |
Indicators | Plate | Bone | Endoprosthesis |
---|---|---|---|
Maximum equivalent von Mises stress, MPa | 76 | 167.2 | 122 |
Maximum linear displacement, mm | 0.08 | 0.094 | 0.145 |
Minimum safety factor | 3.63 | 1.24 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oktyabrova, D.; Ashimov, K.; Guclu, B.; Abilmazhinov, M.; Gorbunov, B.; Zhanatay, R.; Baidalin, T.; Suleimenov, B.; Beknazarov, A.; Azamatov, B.; et al. Mathematical Modeling and Biomechanical Analysis of a Derotation Plate for Treating Complex Hip Dysplasia. Appl. Sci. 2025, 15, 2991. https://doi.org/10.3390/app15062991
Oktyabrova D, Ashimov K, Guclu B, Abilmazhinov M, Gorbunov B, Zhanatay R, Baidalin T, Suleimenov B, Beknazarov A, Azamatov B, et al. Mathematical Modeling and Biomechanical Analysis of a Derotation Plate for Treating Complex Hip Dysplasia. Applied Sciences. 2025; 15(6):2991. https://doi.org/10.3390/app15062991
Chicago/Turabian StyleOktyabrova, Durdana, Kairat Ashimov, Berk Guclu, Mukhtar Abilmazhinov, Boris Gorbunov, Ramazanov Zhanatay, Timur Baidalin, Bekzhan Suleimenov, Askar Beknazarov, Bagdat Azamatov, and et al. 2025. "Mathematical Modeling and Biomechanical Analysis of a Derotation Plate for Treating Complex Hip Dysplasia" Applied Sciences 15, no. 6: 2991. https://doi.org/10.3390/app15062991
APA StyleOktyabrova, D., Ashimov, K., Guclu, B., Abilmazhinov, M., Gorbunov, B., Zhanatay, R., Baidalin, T., Suleimenov, B., Beknazarov, A., Azamatov, B., & Beisekenov, N. (2025). Mathematical Modeling and Biomechanical Analysis of a Derotation Plate for Treating Complex Hip Dysplasia. Applied Sciences, 15(6), 2991. https://doi.org/10.3390/app15062991