Integrated Biowaste Management by Composting at a University Campus: Process Monitoring and Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Scenario
2.2. Characteristics of the Initial Materials and Composting Procedure
2.3. Analytical Procedures
2.3.1. Physico-Chemical, Chemical, and Biological Methods
- Humification ratio (HR) = 100;
- Humification index (HI) = 100;
- Percentage of humic acids (Pha) = 100;
- Polymerization rate =.
2.3.2. Determination of the Pathogen Content in the Final Composts
2.4. Statistical Analyses
3. Results and Discussion
3.1. Thermal Behaviour of the Composting Sets
3.2. Organic Matter Development
3.3. Evolution of the Physico-Chemical and Chemical Parameters
3.4. Agronomic Quality of the Final Composts
3.5. Potentially Toxic Elements and Pathogens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FW | food waste |
CPW | campus pruning waste |
UPNA | Public University of Navarre |
References
- Bello, H.; Ajao, J.O.; Sadiku, N.A. Co-composting of sawdust with food waste: Effects of physical properties on composting process and products quality. Detritus 2022, 23, 3–15. [Google Scholar] [CrossRef]
- García-Prats, M.; González, D.; Moral-Vico, J.; Madrid-López, C.; Sánchez, A. Implementing community composting in primary schools: First experiences at Universitat Autònoma de Barcelona, Spain. Eng. Proc. 2023, 37, 37. [Google Scholar] [CrossRef]
- Hungría, J.; Gutiérrez, M.C.; Siles, J.A.; Martín, M.A. Advantages and drawbacks of OFMSW and winery waste co-composting at pilot scale. J. Clean. Prod. 2017, 164, 1050–1057. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef]
- Rao, J.N.; Parsai, T. A comprehensive review on the decentralized composting systems for household biodegradable waste management. J. Environ. Manag. 2023, 345, 118824. [Google Scholar] [CrossRef]
- Gómez-López, M.D.; El Bied, O.; Beltrá, J.C.; Yanardag, I.H.; Gómez, C.; Faz, Á.; Zornoza, R. Strategies for the sustainable management of the organic fraction of municipal waste. Appl. Sci. 2022, 12, 9400. [Google Scholar] [CrossRef]
- Panaretou, V.; Vakalis, S.; Ntolka, A.; Sotiropoulos, A.; Moustakas, K.; Malamis, D.; Loizidou, M. Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environ. Sci. Pollut. Resear. 2019, 26, 20232–20247. [Google Scholar] [CrossRef]
- Bruni, C.; Akyol, Ç.; Cipolletta, G.; Eusebi, A.L.; Caniani, D.; Masi, S.; Colón, J.; Fatone, F. Decentralized community composting: Past, present and future aspects of Italy. Sustainability 2020, 12, 3319. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Wang, G.X.; Huo, Z.C.; Yan, L.; Gao, Y.M.; Wang, Y.J.; Gu, J.-D.; Wang, W.D. Effect of aeration rates on the composting processes and nitrogen loss during composting. Appl. Environ. Biotech. 2017, 2, 20–28. [Google Scholar] [CrossRef]
- Storino, F.; Plana, R.; Usanos, M.; Morales, D.; Aparicio-Tejo, P.; Muro, J.; Irigoyen, I. Integration of a communal henhouse and community composter to increase motivation in recycling programs: Overview of a three-year pilot experience in Noáin (Spain). Sustainability 2018, 10, 690. [Google Scholar] [CrossRef]
- Keng, Z.X.; Chong, S.; Ng, C.G.; Ridzuan, N.I.; Hanson, S.; Pan, G.T.; Lau, P.L.; Supramaniam, C.V.; Singh, A.; Chin, C.F.; et al. Community-scale composting for food waste: A life-cycle assessment supported case study. J. Clean. Prod. 2020, 261, 121220. [Google Scholar] [CrossRef]
- Torrijos, V.; Dopico, D.C.; Soto, M. Integration of food waste composting and vegetable gardens in a university campus. J. Clean. Prod. 2021, 315, 128175. [Google Scholar] [CrossRef]
- Marcello, B.; Di Gennaro, V.; Ferrini, S. Let the citizens speak: An empirical economic analysis of domestic organic waste for community composting in Tuscany. J. Clean. Prod. 2021, 306, 127263. [Google Scholar] [CrossRef]
- Pai, S.; Ai, N.; Zheng, J. Decentralized community composting feasibility analysis for residential food waste: A Chicago case study. Sustain. Cities Soc. 2019, 50, 101683. [Google Scholar] [CrossRef]
- Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S. Waste Manag. 2017, 59, 476–486. [Google Scholar] [CrossRef]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- González-Sierra, R.P.; Arizmendiarrieta, S.J.; Sánchez, B.P.; Irigoien, I.; Duarte, G.N. Community Composting. A Practice Guide for Local Management of Biowaste. Zero Waste Europa. 2019. Available online: https://sites.google.com/view/fearesiduos/ (accessed on 18 November 2020).
- Sánchez, A. Decentralized composting of food waste: A perspective on scientific knowledge. Front. Chem. Eng. 2022, 4, 850308. [Google Scholar] [CrossRef]
- Gao, X.; Yang, F.; Yan, Z.; Zhao, J.; Li, S.C.; Nghiem, L.D.; Li, G.; Luo, W. Humification and maturation of kitchen waste during indoor composting by individual households. Sci. Total Environ. 2021, 814, 152509. [Google Scholar] [CrossRef]
- FCQAO, Federal Compost Quality Assurance Organization. Method Books for the Analysis of Compost; University of Essen: Duisburg, Germany, 1994. [Google Scholar]
- Álvarez-Alonso, C.; Pérez-Murcia, M.D.; Sánchez-Méndez, S.; Martínez-Sabater, E.; Irigoyen, I.; López, M.; Nogués, I.; Paredes, C.; Orden, L.; García-Rández, A.; et al. Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts. Agronomy 2024, 14, 54. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Alburquerque, J.A.; Restrepo, A.P.; de la Fuente, C.; Paredes, C.; Moral, R.; Bernal, M.P. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioener. 2012, 43, 26–35. [Google Scholar] [CrossRef]
- CEN EN 13039:1999 E; European Committee for Standardization. Soil Improvers and Growing Media-Determination of Organic Matter and Ash. European Committee for Standardization: Brussels, Belgium, 2011.
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-composting distillery wastes with animal manure: Carbon and nitrogen transformations and evaluation of compost stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Brinton, W.F.; Evans, E.; Droffner, M.L.; Brinton, R.B. A standardized Dewar test for evaluation of compost self-heating. Biocycle 1995, 36, 1–16. [Google Scholar]
- Wang, Y.; Tang, Y.; Li, M.; Yuan, Z. Aeration rate improves the compost quality of food waste and promotes the decomposition of toxic materials in leachate by changing the bacterial community. Bioresour. Technol. 2021, 340, 125716. [Google Scholar] [CrossRef]
- Gaspar, S.S.; Assis, L.L.R.; Carvalho, C.A.; Buttrós, V.H.; Ferreira, G.M.R.; Schwan, R.F.; Pasqual, M.; Rodrigues, F.A.; Rigobelo, E.C.; Castro, R.P.; et al. Dynamics of microbiota and physicochemical characterization of food waste in a new type of composter. Front. Sustain. Food Syst. 2022, 6, 960196. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. Co-composting of green waste mixed with unprocessed and processed food waste: Influence on the composting process and product quality. Waste Biomass Valor. 2019, 10, 63–74. [Google Scholar] [CrossRef]
- Storino, F.; Menéndez, S.; Muro, J.; Aparicio-Tejo, P.M.; Irigoyen, I. Effect of feeding regime on composting in bins. Compost Sci. Util. 2017, 25, 71–81. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2019/1009, 2019. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertiliser products, amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170, 1–114. [Google Scholar]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez- Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef]
- Pelegrín, M.; Sáez-Tovar, J.A.; Andreu-Rodríguez, J.; Pérez-Murcia, M.D.; Martínez-Sabater, E.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bustamante, M.A.; Agulló, E.; Vico, A.; et al. Composting of the invasive species Arundo donax with sewage and agri-food sludge: Agronomic, economic and environmental aspects. Waste Manag. 2018, 78, 730–740. [Google Scholar] [CrossRef]
- Sáez, J.A.; Clemente, R.; Bustamante, M.Á.; Yañez, D.; Bernal, M.P. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm—Agronomical and environmental implications. J. Environ. Manag. 2017, 192, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, Y.; Ding, J.; Luo, W.; Zhou, H.; Cheng, H.; Wang, H.; Zhang, X.; Wang, J.; Xu, P.; et al. High oil content inhibits humification in food waste composting by affecting microbial community succession and organic matter degradation. Bioresour. Technol. 2023, 376, 128832. [Google Scholar] [CrossRef] [PubMed]
- Mandpe, A.; Tyagi, L.; Paliya, S.; Chaudhry, S.; Motghare, A.; Kumar, S. Rapid-in-house composting of organic solid wastes with fly ash supplementation: Performance evaluation at thermophilic exposures. Bioresour. Technol. 2021, 337, 125386. [Google Scholar] [CrossRef] [PubMed]
- Paredes, C.; Bernal, M.P.; Roig, A.; Cegarra, J. Effects of Olive Mill Wastewater Addition in Composting of Agro Industrial and Urban Wastes. Biodegradation 2001, 12, 225–234. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef]
- Manu, M.K.; Kumar, R.; Garg, A. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresour. Technol. 2017, 234, 167–177. [Google Scholar] [CrossRef]
- Pardo, G.; Moral, R.; Aguilera, E.; Del Prado, A. Gaseous emissions from management of solid waste: A systematic review. Global Change Biol. 2015, 21, 1313–1327. [Google Scholar] [CrossRef]
- Alves, D.; Villar, I.; Mato, S. Community composting strategies for biowaste treatment: Methodology, bulking agent and compost quality. Environ. Sci. Pollut. Res. Int. 2024, 31, 9873–9885. [Google Scholar] [CrossRef]
- Roletto, E.; Barberis, R.; Consiglio, M.; Jodice, R. Chemical parameters for evaluating compost maturity. Biocycle 1985, 26, 46–47. [Google Scholar]
- Iglesias Jiménez, E.; Pérez García, V. Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 1992, 38, 331–343. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Marmolejo-Rebellon, L.F.; Torres-Lozada, P. Evaluation of the addition of wood ash to control the pH of substrates in municipal biowaste composting. Ing. Investig. Tecnol. 2014, 15, 469–478. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Khan, J. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour. Technol. 2015, 182, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, C.; Wang, B.; Bai, X.; Gao, H.; Huang, Y. Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two amendments. Waste Manag. 2019, 95, 306–315. [Google Scholar] [CrossRef]
Amount | Set 1 | Set 2 | Set 3 | Set 4 | Average | SD |
---|---|---|---|---|---|---|
FW | 838 | 794 | 784 | 542 | 740 | 134 |
CPW | 230 | 236 | 155 | 132 | 188 | 52 |
FW:CPW | 4:1 | 3:1 | 5:1 | 4:1 | ||
Total | 1068 | 1030 | 939 | 674 | 928 | 177 |
FW1 | CPW1 | FW2 | CPW2 | |
---|---|---|---|---|
Dry weight (%) | 82.4 ± 1.1 | 34.1 ± 0.3 | 60.7 ± 2.0 | 8.8 ± 0.1 |
pH | 6.1 ± 0.04 | 6.3 ± 0.05 | 4.3 ± 0.05 | 6.2 ± 0.04 |
EC (dS m−1) | 6.37 ± 0.05 | 1.09 ± 0.08 | 5.14 ± 0.06 | 1.38 ± 0.01 |
OM (%) | 90.5 ± 0.6 | 95.8 ± 0.8 | 95.8 ± 0.7 | 92.0 ± 0.7 |
TOC (%) | 43.8 ± 0.3 | 50.0 ± 0.4 | 49.2 ± 0.4 | 44.5 ± 0.3 |
TN (%) | 2.23 ± 0.02 | 0.83 ± 0.01 | 2.32 ± 0.14 | 0.83 ± 0.01 |
TOC/TN ratio | 19.7 ± 0.1 | 60.4 ± 0.7 | 21.5 ± 1.3 | 53.7 ± 0.4 |
P (g kg−1) | 2.76 ± 0.04 | 0.46 ± 0.01 | 3.41 ± 0.03 | 1.87 ± 0.06 |
Fe (mg kg−1) | 662 ± 10 | 249 ± 33 | 64.5 ± 3.0 | 533 ± 11 |
Cu (mg kg−1) | 7.91 ± 0.10 | 3.59 ± 0.03 | 3.82 ± 0.16 | 9.36 ± 0.18 |
Mn (mg kg−1) | 46.4 ± 0.7 | 12.8 ± 0.1 | 14.1 ± 0.1 | 34.6 ± 0.8 |
Zn (mg kg−1) | 39.6 ± 0.6 | 18.6 ± 0.2 | 20.74 ± 0.1 | 42.0 ± 1.0 |
Cd (mg kg−1) | 0.13 ± 0.01 | 0.04 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.00 |
Cr (mg kg−1) | 7.91 ± 0.35 | 3.59 ± 0.10 | 3.82 ± 0.00 | 9.36 ± 0.2 |
FW3 | CPW3 | FW4 | CPW4 | |
---|---|---|---|---|
Dry weight (%) | 76.6 ± 2.8 | 34.0 ± 0.4 | 85.1 ±0.9 | 43.4 ± 0.7 |
pH | 5.9 ± 0.05 | 6.2 ± 0.05 | 5.6 ± 0.04 | 6.5 ± 0.06 |
EC (dS m−1) | 11.2 ± 0.3 | 1.01 ± 0.01 | 6.53 ± 0.13 | 1.21 ± 0.01 |
OM (%) | 88.8 ± 0.6 | 94.4 ± 0.7 | 90.2 ± 0.6 | 96.2 ± 0.7 |
TOC (%) | 45.7 ± 0.3 | 47.3 ± 0.3 | 48.0 ± 0.4 | 48.3 ± 0.4 |
TN (%) | 3.59 ± 0.03 | 0.68 ± 0.01 | 3.03 ± 0.03 | 0.90 ± 0.01 |
TOC/TN ratio | 12.8 ± 0.1 | 69.6 ± 0.5 | 16.0 ± 0.1 | 54.2 ± 0.5 |
P (g kg−1) | 3.66 ± 0.14 | 1.17 ± 0.04 | 7.14 ± 0.34 | 1.02 ± 0.01 |
Fe (mg kg−1) | 191 ± 6 | 199 ± 5 | 85.6 ± 1.5 | 191 ± 2 |
Cu (mg kg−1) | 6.32 ± 0.29 | 8.15 ± 0.31 | 5.75 ± 0.05 | 5.83 ± 0.80 |
Mn (mg kg−1) | 26.5 ± 1.1 | 18.7 ± 0.6 | 8.7 ± 0.1 | 19.5 ± 0.2 |
Zn (mg kg−1) | 30.5 ± 1.4 | 33.0 ± 0.9 | 37.6 ± 1.0 | 6.90 ± 0.16 |
Cd (mg kg−1) | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.01 | <0.001 |
Cr (mg kg−1) | 6.320 ± 0.5 | 8.15 ± 0.23 | 5.75 ± 0.04 | 5.83 ± 1.48 |
Samples | pH | EC (dS m−1) | OM (%) | TN (%) | TOC (%) | TOC/TN | Na (g kg−1) | K (g kg−1) | P (g kg−1) |
---|---|---|---|---|---|---|---|---|---|
Set 1: 78.5% FW1 + 21.5% CPW1 | |||||||||
M1 | 6.7 a ± 0.0 | 4.75 b ± 0.05 | 92.0 d ± 0.7 | 2.49 b ± 0.03 | 45.5 b ± 0.9 | 18.3 c ± 0.2 | 4.89 a ± 0.16 | 13.1 b ± 0.5 | 3.23 a ± 0.10 |
M2 | 7.2 b ± 0.1 | 6.67 c ± 0.06 | 87.5 c ± 0.6 | 1.82 a ± 0.01 | 44.1 b ± 0.3 | 24.4 d ± 0.2 | 5.88 b ± 0.04 | 12.0 a ± 0.1 | 3.62 a ± 0.03 |
M3 | 8.2 c ± 0.1 | 4.15 a ± 0.03 | 72.5 a ± 0.5 | 2.66 c ± 0.02 | 39.7 a ± 0.3 | 15.0 b ± 0.1 | 6.79 c ± 0.05 | 15.7 c ± 0.1 | 15.8 c ± 0.1 |
M4 | 8.9 d ± 0.1 | 6.51 c ± 0.23 | 76.7 b ± 0.6 | 2.89 d ± 0.04 | 40.4 a ± 0.3 | 14.1 a ± 0.2 | 12.8 d ± 0.1 | 19.4 d ± 0.1 | 12.1 b ± 0.2 |
LSD | 0.2 | 0.33 | 1.6 | 0.01 | 1.4 | 0.5 | 0.28 | 0.7 | 0.3 |
Set 2: 77.1% FW2 + 22.9% CPW2 | |||||||||
M1 | 5.7 a ± 0.0 | 4.39 a ± 0.03 | 93.4 d ± 0.7 | 2.21 b ± 0.02 | 51.7 d ± 0.1 | 23.5 c ± 0.2 | 3.66 b ± 0.03 | 5.58 a ± 0.05 | 3.06 a ± 0.03 |
M2 | 7.7 b ± 0.1 | 5.41 b ± 0.05 | 82.1 c ± 1.2 | 2.36 c ± 0.02 | 45.6 c ± 0.4 | 19.4 b ± 0.2 | 5.19 c ± 0.19 | 14.9 b ± 0.6 | 4.88 b ± 0.13 |
M3 | 8.3 c ± 0.1 | 6.23 c ± 0.06 | 69.1 a ± 0.5 | 1.70 a ± 0.01 | 40.0 a ± 0.3 | 23.7 c ± 0.2 | 2.21 a ± 0.02 | 14.4 b ± 0.1 | 16.4 d ± 0.2 |
M4 | 8.4 c ± 0.1 | 7.47 d ± 0.08 | 78.5 b ± 0.6 | 3.31 d ± 0.04 | 44.2 b ± 0.4 | 13.4 a ± 0.1 | 9.34 d ± 0.07 | 21.7 c ± 0.2 | 8.95 c ± 0.06 |
LSD | 0.2 | 0.15 | 2.2 | 0.07 | 1.0 | 4.1 | 0.28 | 0.8 | 0.30 |
Set 3: 83.5% FW3 + 16.5% CPW3 | |||||||||
M1 | 6.2 a ± 0.1 | 5.82 a ± 0.07 | 87.6 d ± 0.6 | 3.64 c ± 0.03 | 47.0 c ± 0.4 | 13.0 b ± 0.1 | 7.36 a ± 0.15 | 12.9 a ± 0.3 | 6.78 a ± 0.14 |
M2 | 6.7 b ± 0.1 | 6.10 b ± 0.04 | 82.9 c ± 0.6 | 3.08 a ± 0.02 | 43.5 b ± 0.3 | 14.2 c ± 0.1 | 8.93 b ± 0.10 | 16.7 b ± 0.2 | 7.75 b ± 0.08 |
M3 | 8.2 c ± 0.1 | 6.32 c ± 0.10 | 71.8 a ± 0.6 | 3.08 a ± 0.02 | 39.7 a ± 0.3 | 13.0 b ±0.1 | 9.41 c ± 0.07 | 19.5 c ± 0.1 | 11.4 c ± 0.1 |
M4 | 8.1 c ± 0.1 | 6.93 d ± 0.05 | 75.3 b ± 0.7 | 3.32 b ± 0.03 | 39.5 a ± 0.3 | 12.0 a ± 0.1 | 11.3 d ± 0.2 | 21.5 d ± 0.4 | 14.7 d ± 0.3 |
LSD | 0.2 | 2.23 | 1.7 | 0.07 | 0.8 | 0.3 | 0.39 | 0.7 | 0.45 |
Set 4: 80.4% FW4 + 19.6% CPW4 | |||||||||
M1 | 5.9 a ± 0.0 | 3.63 a ± 0.04 | 92.1 d ± 0.7 | 2.09 a ± 0.03 | 44.3 a ± 0.4 | 21.3 d ± 0.2 | 4.50 c ± 0.05 | 11.3 b ± 0.1 | 7.09 c ± 0.07 |
M2 | 6.9 b ± 0.1 | 4.26 b ± 0.09 | 84.9 c ± 0.6 | 3.28 b ± 0.02 | 50.4 c ± 0.4 | 15.5 c ± 0.1 | 3.05 a ± 0.03 | 9.41 a ± 0.08 | 5.28 a ± 0.04 |
M3 | 8.3 c ± 0.1 | 4.52 bc ± 0.04 | 82.6 b ± 0.6 | 3.47 c ± 0.03 | 46.3 b ± 0.3 | 13.4 b ± 0.1 | 4.17 b ± 0.03 | 14.3 c ± 0.1 | 6.01 b ± 0.05 |
M4 | 8.3 c ± 0.2 | 4.63 c ± 0.15 | 78.9 a ± 0.7 | 3.51 c ± 0.03 | 44.1 a ± 0.4 | 12.6 a ± 0.1 | 5.61 d ± 0.06 | 15.0 d ± 0.2 | 9.15 d ± 0.10 |
LSD | 0.3 | 0.25 | 1.7 | 0.07 | 1.0 | 0.3 | 0.13 | 0.3 | 0.18 |
Parameters | Compost 1 | Compost 2 | Compost 3 | Compost 4 | Average | SD |
---|---|---|---|---|---|---|
EC (dS m−1) | 8.9 ± 0.1 | 8.4 ± 0.7 | 8.1 ± 0.1 | 8.3 ± 0.2 | 8.4 | 0.3 |
TOC/TN ratio | 14.1 ± 0.2 | 13.4 ± 0.1 | 12.0 ± 0.1 | 12.6 ± 0.1 | 13.0 | 0.9 |
TN (g kg−1) | 28.8 ± 0.4 | 33.1 ± 0.4 | 33.2 ± 0.3 | 35.1 ± 0.3 | 25.1 | 14.9 |
P (g kg−1) | 12.1 ± 0.2 | 8.9 ± 0.1 | 14.7 ± 0.3 | 9.2 ± 0.1 | 11.2 | 2.7 |
K (g kg−1) | 19.4 ± 0.1 | 21.6 ± 0.2 | 21.4 ± 0.4 | 15.0 ± 0.2 | 19.4 | 3.1 |
Na (g kg−1) | 12.8 ± 0.1 | 9.3 ± 0.1 | 11.3 ± 0.2 | 5.6 ± 0.1 | 9.7 | 3.1 |
Ca (g kg−1) | 44.6 ± 0.5 | 20.8 ± 0.1 | 53.3 ± 1.1 | 47.2 ± 0.5 | 41.5 | 14.2 |
Mg (g kg−1) | 3.0 ± 0.0 | 2.4 ± 0.0 | 3.5 ± 0.1 | 2.5 ± 0.0 | 2.9 | 0.5 |
Fe (mg kg−1) | 870 ± 9 | 619 ± 6 | 659 ± 9 | 896 ± 15 | 761 | 143 |
Mn (mg kg−1) | 67.0 ± 0.5 | 69.5 ± 0.6 | 81.6 ± 1.7 | 54.6 ± 0.7 | 68.2 | 11.1 |
Parameters | Compost from Set 1 | Compost from Set 2 | Compost from Set 3 | Compost from Set 4 | Average | SD |
---|---|---|---|---|---|---|
HA (%) | 4.7 | 5.9 | 5.8 | 7.2 | 5.9 | 1.0 |
FA (%) | 2.7 | 2.9 | 2.6 ± 0.2 | 3.2 | 2.9 | 0.3 |
HR (%) | 18.3 | 19.9 | 21.3 | 23.6 | 20.8 | 2.2 |
HI (%) | 11.6 | 13.3 | 14.7 | 16.3 | 14.0 | 2.0 |
Pha (%) | 63.5 | 67.0 | 69.0 | 69.2 | 67.2 | 2.6 |
Polymerization rate | 1.7 | 2.0 | 2.2 | 2.3 | 2.1 | 0.3 |
GI (%) | 101 | 75.2 | 77.8 | 104.5 | 89.7 | 15.4 |
CEC (meq 100 g−1 OM) | 55.0 | 125 | 113 | 76.7 | 92.4 | 32.3 |
Stability test | V, Stable | V, Stable | V, Stable | V, Stable |
Compost from Set 1 | Compost from Set 2 | Compost from Set 3 | Compost from Set 4 | Average | SD | EU Limit Values 1 | |
---|---|---|---|---|---|---|---|
Co (mg kg−1) | 0.7 ± 0.01 | 0.5 ± 0.02 | 0.9 ± 0.05 | 0.6 ± 0.17 | 0.7 | 0.2 | – |
Cu (mg kg−1) | 16.6 ± 0.2 | 20.9 ± 0.3 | 21.2 ± 0.5 | 23.6 ± 0.4 | 20.6 | 2.9 | 300 |
Zn (mg kg−1) | 143 ± 1 | 318 ± 3 | 316 ± 7 | 400 ± 4 | 295 | 109 | 800 |
Cr (mg kg−1) | 9.2 ± 0.1 | 8.9 ± 0.1 | 11.1 ± 0.6 | 12.5 ± 1.1 | 10.4 | 1.7 | – |
Cd (mg kg−1) | 0.2 ± 0.003 | 0.2 ± 0.007 | 0.1 ± 0.012 | 0.5 ± 0.096 | 0.3 | 0.2 | 1.5 |
Pb (mg kg−1) | 2.4 ± 0.02 | 3.0 ± 0.29 | 1.9 ± 0.16 | 3.6 ± 0.23 | 2.7 | 0.7 | 120 |
Ni (mg kg−1) | 3.4 ± 0.2 | 4.0 ± 0.1 | 4.0 ± 0.1 | 6.8 ± 0.4 | 4.5 | 1.5 | 50 |
As (mg kg−1) | 1.0 ± 0.17 | 0.2 ± 0.10 | 1.1 ± 0.01 | 1.6 ± 0.10 | 1.0 | 0.6 | 40 |
Pathogen | Compost from Set 1 | Compost from Set 2 | Compost from Set 3 | Compost from Set 4 | EU Limit values a |
---|---|---|---|---|---|
Escherichia coli (UFC/g compost) | 9 | 1.1 × 106 | 93 | 460 | <1000 CFU 1 |
Listeria monocytogenes 2 | Absence | Absence | Presence | Presence | – |
Salmonella spp. 2 | Absence | Absence | Absence | Absence | Absence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Alonso, C.; Pérez-Murcia, M.D.; Martínez-Sabater, E.; Irigoyen, I.; Sánchez-Arizmendiarrieta, J.; Plana, R.; López, M.; Nogués, I.; Bustamante, M.Á. Integrated Biowaste Management by Composting at a University Campus: Process Monitoring and Quality Assessment. Appl. Sci. 2025, 15, 2910. https://doi.org/10.3390/app15062910
Álvarez-Alonso C, Pérez-Murcia MD, Martínez-Sabater E, Irigoyen I, Sánchez-Arizmendiarrieta J, Plana R, López M, Nogués I, Bustamante MÁ. Integrated Biowaste Management by Composting at a University Campus: Process Monitoring and Quality Assessment. Applied Sciences. 2025; 15(6):2910. https://doi.org/10.3390/app15062910
Chicago/Turabian StyleÁlvarez-Alonso, Cristina, María Dolores Pérez-Murcia, Encarnación Martínez-Sabater, Ignacio Irigoyen, Joseba Sánchez-Arizmendiarrieta, Ramón Plana, Marga López, Isabel Nogués, and María Ángeles Bustamante. 2025. "Integrated Biowaste Management by Composting at a University Campus: Process Monitoring and Quality Assessment" Applied Sciences 15, no. 6: 2910. https://doi.org/10.3390/app15062910
APA StyleÁlvarez-Alonso, C., Pérez-Murcia, M. D., Martínez-Sabater, E., Irigoyen, I., Sánchez-Arizmendiarrieta, J., Plana, R., López, M., Nogués, I., & Bustamante, M. Á. (2025). Integrated Biowaste Management by Composting at a University Campus: Process Monitoring and Quality Assessment. Applied Sciences, 15(6), 2910. https://doi.org/10.3390/app15062910