Biochemical Profile and Antioxidant Activity of Fresh Fruits from Apple Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Location
2.2. Preparation of Extracts
2.3. Determination of Moisture and Ash Content
2.4. Determination of Sugar Content
2.5. Determination of Antioxidant Activity (DPPH)
2.6. Determination of Total Polyphenol Content
2.7. Determination of Total Tannin Content
2.8. Determination of Total Flavonoid Content
2.9. Determination of Total Anthocyanin Content
2.10. Determination of Carotenoid Content (Lycopene and β-Carotene)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Moisture, Ash, Sugars, and DPPH• Content
3.2. The Content of Phenolic Compounds
3.3. The Content of Carotenes (Lycopene and β-Carotene)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Mureșan, A.E.; Sestras, A.F.; Militaru, M.; Păucean, A.; Tanislav, A.E.; Pușcaș, A.; Sestras, R.E. Chemometric comparison and classification of 22 apple genotypes based on texture analysis and physico-chemical quality attributes. Horticulturae 2022, 8, 64. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Meland, M. Polyphenolics and chemical profiles of domestic Norwegian apple (Malus × domestica Borkh.) cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Gramza-Michalowska, A. Recent development on the chemical composition and phenolic extraction methods of apple (Malus domestica)—a review. Food Bioprocess Technol. 2024, 17, 2519–2560. [Google Scholar] [CrossRef]
- da Silva, L.C.; Viganó, J.; de Souza Mesquita, L.M.; Dias, A.L.B.; de Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Geană, E.-I.; Ciucure, C.T.; Ionete, R.E.; Ciocârlan, A.; Aricu, A.; Ficai, A.; Andronescu, E. Profiling of phenolic compounds and triterpene acids of twelve apple (Malus domestica Borkh.) cultivars. Foods 2021, 10, 267. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Phenolic compounds from apples: From natural fruits to the beneficial effects in the digestive system. Molecules 2024, 29, 568. [Google Scholar] [CrossRef]
- Hassanpour, S.; Maherisis, N.; Eshratkhah, B.; Baghbani Mehmandar, F. Plants and secondary metabolites (tannins): A review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Lees, G.L.; Suttill, N.H.; Wall, K.M.; Beveridge, T.H. Localization of condensed tannins in apple fruit peel, pulp, and seeds. Can. J. Bot. 1995, 73, 1897–1904. [Google Scholar] [CrossRef]
- Minocha, S.; Kumari, S.; Tiwari, A.; Gupta, A.K. An overview on tannins. Int. J. Pharm. Biol. Sci. Arch. 2015, 3, 1–3. [Google Scholar]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 105, 3–19. [Google Scholar] [CrossRef]
- McMahon, L.R.; Leon, F.; McAllister, T.; McAllister, T.A.; Berg, B.P.; Majak, W.; Acharya, S.N.; Popp, J.D.; Jürgen Popp, J.P.; Coulman, B.E.; et al. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant Sci. 2000, 80, 469–485. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K.; Hernandez, F. Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Sci. Rep. 2021, 11, 20253. Available online: https://www.nature.com/articles/s41598-021-99293-x.pdf (accessed on 15 December 2024). [CrossRef]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in ‘Orin’ apples (Malus domestica) at different ripening stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef]
- Cirillo, A.; Spadafora, N.D.; James-Knight, L.; Ludlow, R.A.; Müller, C.T.; De Luca, L.; Di Vaio, C. Comparison of volatile organic compounds, quality, and nutritional parameters from local Italian and international apple cultivars. Horticulturae 2024, 10, 863. [Google Scholar] [CrossRef]
- Mignard, P.; Beguería, S.; Giménez, R.; Font i Forcada, C.; Reig, G.; Moreno, M.Á. Effect of genetics and climate on apple sugars and organic acids profiles. Agronomy 2022, 12, 827. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Dae-Ok, K.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef]
- Mignard, P.; Beguería, S.; Reig, G.; Forcada, C.F.; Moreno, M.A. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Sci. Hortic. 2021, 285, 110142. [Google Scholar] [CrossRef]
- Geleta, B.T.; Lee, J.C.; Heo, J.Y. Antioxidant activity and mineral content in unripe fruits of 10 apple cultivars growing in the northern part of Korea. Horticulturae 2023, 9, 114. [Google Scholar] [CrossRef]
- Gavrilă, M.F.; Petre, G.; Cosmulescu, S.N. Evaluation of some genetic resources used in the apple improvement program at SCDP Voineşti. Ann. Univ. Craiova Biol. Hortic. Food Prod. Process. Technol. Environ. Eng. 2023, 28, 173–178. [Google Scholar] [CrossRef]
- Stamin, F.D.; Vijan, L.E.; Topală, C.M.; Cosmulescu, S.N. The influence of genotype, environmental factors, and location on the nutraceutical profile of Rosa canina L. fruits. Agronomy 2024, 14, 2847. [Google Scholar] [CrossRef]
- Angraini, T.; Wilma, S.; Syukri, D.; Azima, F. Total phenolic, anthocyanin, catechins, DPPH radical scavenging activity, and toxicity of Lepisanthes alata (Blume) Leenh. Int. J. Food Sci. 2019, 2019, 9703176. [Google Scholar] [CrossRef] [PubMed]
- Macit, İ.; Aydın, E.; Tas, A.; Gundogdu, M. Fruit quality properties of the local apple varieties of Anatolia. Sustainability 2021, 13, 6127. [Google Scholar] [CrossRef]
- Balta, M.F.; Karakaya, O.; Kurt, H.; Yılmaz, M.; Uzun, S.; Balta, F. Phytochemical variation of native apple germplasm resources from the Eastern Black Sea Region, Turkey. Erwerbs-Obstbau 2022, 64, 685–695. [Google Scholar] [CrossRef]
- Kalkisim, O.; Ozdes, D.; Okcu, Z.; Karabulut, B.; Senturk, H.B. Determination of pomological and morphological characteristics and chemical compositions of local apple varieties grown in Gumushane, Turkey. Erwerbs-Obstbau 2016, 58, 41–48. [Google Scholar] [CrossRef]
- Campeanu, G.; Neata, G.; Darjanschi, G. Chemical composition of the fruits of several apple cultivars growth as biological crop. Not. Bot. Horti Agrobot. 2009, 37, 161–164. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Starowicz, M.; Achrem–Achremonicz, B.; Piskuła, M.K.; Zieliński, H. Phenolic compounds from apples: Reviewing their occurrence, absorption, bioavailability, processing, and antioxidant activity—A review. Pol. J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Geleta, B.T.; Abebe, A.M.; Heo, J.Y. Effect of genotype× environment interactions on apple fruit characteristics in a high latitude region of Korea. Appl. Fruit Sci. 2025, 67, 14. [Google Scholar] [CrossRef]
- Piagentini, A.M.; Pirovani, M.E. Total phenolics content, antioxidant capacity, physicochemical attributes, and browning susceptibility of different apple cultivars for minimal processing. Int. J. Fruit Sci. 2017, 17, 102–116. [Google Scholar] [CrossRef]
- Mohammed, K.; Saghrouchni, H.; El Abdali, Y.; Amine, A.; Haoudi, N.; El Fadili, M.; Jamila, B. Phytochemical and physicochemical studies of different apple varieties grown in Morocco. Open Chem. 2024, 22, 20230205. [Google Scholar] [CrossRef]
- Bahukhandi, A.; Dhyani, P.; Jugran, A.K.; Bhatt, I.D.; Rawal, R.S. Total phenolics, tannins and antioxidant activity in twenty different apple cultivars growing in West Himalaya, India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 71–78. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef]
- Ampomah-Dwamena, C.; Dejnoprat, S.; Lewis, D.; Sutherland, P.; Volz, R.K.; Allan, A.C. Metabolic and gene expression analysis of apple (Malus × domestica) carotenogenesis. J. Exp. Bot. 2012, 63, 4497–4511. [Google Scholar] [CrossRef]
- Charoensiri, R.; Kongkachuichai, R.; Suknicom, S.; Sungpuag, P. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem. 2009, 113, 202–207. [Google Scholar] [CrossRef]
- Asif, M. Chemistry and antioxidant activity of plants containing some phenolic compounds. Chem. Int. 2015, 1, 35–52. [Google Scholar]
- Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier–El Bouhtoury, F. Tannins extraction: A key point for their valorization and cleaner production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Prieto, M.A. By-products of agri-food industry as tannin-rich sources: A review of tannins’ biological activities and their potential for valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant activity of anthocyanins and anthocyanidins: A critical review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef]
Genotype | Moisture Content (%) | Ash (%) | TSC (gGluE/100 g) | DPPH• (%) |
---|---|---|---|---|
‘Valery’ | 76.75 ± 0.19 l | 0.38 ± 0.01 e | 9.91 ± 0.06 a | 12.07 ± 0.46 i |
‘Florina’ | 83.26 ± 0.03 c | 0.33 ± 0.01 g | 8.94 ± 0.15 d | 15.50 ± 0.06 e |
‘George’ | 83.99 ± 0.19 b | 0.29 ± 0.01 i | 7.78 ± 0.14 f | 16.13 ± 0.04 d |
H1/20–10 | 80.70 ± 0.04 f | 0.33 ± 0.01 g | 9.27 ± 0.13 bc | 15.44 ± 0.12 e |
H14/1 | 77.30 ± 0.18 k | 0.67 ± 0.01 a | 9.48 ± 0.16 b | 17.55 ± 0.06 c |
H8/6 | 83.47 ± 0.18 c | 0.26 ± 0.01 j | 6.98 ± 0.23 g | 15.45 ± 0.06 e |
H2/3 | 83.42 ± 0.11 c | 0.39 ± 0.01 d | 6.86 ± 0.13 g | 13.01 ± 0.06 h |
H1/55 | 84.70 ± 0.05 a | 0.17 ± 0.01 k | 7.01 ± 0.17 g | 14.75 ± 0.02 f |
H4/42 | 78.95 ± 0.10 i | 0.59 ± 0.01 b | 9.82 ± 0.39 a | 11.39 ± 0.16 k |
H1/28 | 82.94 ± 0.11 d | 0.32 ± 0.01 h | 7.16 ± 0.13 g | 11.46 ± 0.05 k |
H8/1 | 80.41 ± 0.11 g | 0.31 ± 0.01 h | 7.70 ± 0.14 f | 18.47 ± 0.04 b |
H19/6 | 79.69 ± 0.04 h | 0.37 ± 0.01 f | 8.18 ± 0.18 e | 13.41 ± 0.12 g |
H18/6 | 81.50 ± 0.14 e | 0.33 ± 0.01 g | 7.60 ± 0.15 f | 19.90 ± 0.04 a |
H4/44 | 77.60 ± 0.03 j | 0.44 ± 0.01 c | 9.01 ± 0.20 cd | 10.71 ± 0.07 l |
Mean | 81.05 ± 2.61 | 0.37 ± 0.12 | 8.26 ± 1.09 | 14.66 ± 2.73 |
Genotype | TPC (mg GAE/100 g) | TTC (mg GAE/100 g) | TFC (mg CE/100 g) | TAC (mg C3GE/100 g) |
---|---|---|---|---|
‘Valery’ | 520.07 ± 6.03 g | 316.06 ± 1.03 e | 99.76 ± 4.19 b | 17.39 ± 0.15 e |
‘Florina’ | 499.30 ± 3.97 h | 306.60 ± 2.94 d | 82.74 ± 3.71 cd | 17.99 ± 0.15 bc |
‘George’ | 693.28 ± 4.75 e | 361.94 ± 1.59 a | 90.83 ± 5.20 c | 17.99 ± 0.15 bc |
H1/20–10 | 648.77 ± 4.26 f | 257.16 ± 1.92 f | 100.32 ± 4.52 b | 17.76 ± 0.16 cd |
H14/1 | 793.22 ± 8.19 b | 299.27 ± 2.10 e | 102.24 ± 4.79 b | 19.00 ± 0.14 a |
H8/6 | 759.46 ± 9.62 c | 324.97 ± 2.03 b | 105.53 ± 5.41 b | 17.51 ± 0.15 de |
H2/3 | 382.33 ± 4.17 k | 174.52 ± 1.33 i | 72.13 ± 2.92 ef | 18.14 ± 0.14 b |
H1/55 | 449.95 ± 4.20 j | 256.75 ± 2.18 f | 84.06 ± 3.80 cd | 17.59 ± 0.15 de |
H4/42 | 729.40 ± 2.37 d | 118.06 ± 1.73 l | 63.67 ± 2.14 g | 17.54 ± 0.15 de |
H1/28 | 377.63 ± 2.63 k | 138.95 ± 1.28 j | 77.52 ± 2.91 de | 17.53 ± 0.16 de |
H8/1 | 514.81 ± 3.97 g | 186.02 ± 4.69 h | 128.19 ± 6.82 a | 18.16 ± 0.14 b |
H19/6 | 483.16 ± 3.03 i | 127.65 ± 4.04 k | 83.61 ± 3.50 cd | 17.67 ± 0.15 de |
H18/6 | 839.08 ± 3.52 a | 252.05 ± 0.85 g | 130.39 ± 6.87 a | 19.04 ± 0.14 a |
H4/44 | 379.53 ± 2.56 l | 108.41 ± 1.48 m | 67.96 ± 2.25 fg | 18.26 ± 0.14 b |
Mean | 576.43 ± 159.01 | 230.60 ± 84.49 | 92.07 ± 20.22 | 17.97 ± 0.52 |
Genotype | Lycopene (mg/100 g) | β–Carotene (mg/100 g) |
---|---|---|
‘Valery’ | 0.51 ± 0.01 f | 0.09 ± 0.02 f |
‘Florina’ | 0.25 ± 0.01 l | 0.09 ± 0.04 fg |
‘George’ | 0.29 ± 0.01 k | 0.13 ± 0.01 e |
H1/20–10 | 0.87 ± 0.01 c | 0.06 ± 0.01 gh |
H14/1 | 0.49 ± 0.01 g | 0.16 ± 0.01 d |
H8/6 | 0.34 ± 0.01 i | 0.04 ± 0.01 hi |
H2/3 | 0.25 ± 0.01 l | 0.05 ± 0.01 hi |
H1/55 | 0.88 ± 0.01 b | 0.03 ± 0.01 i |
H4/42 | 0.48 ± 0.01 e | 0.24 ± 0.01 h |
H1/28 | 0.31 ± 0.01 j | 0.16 ± 0.01 d |
H8/1 | 0.95 ± 0.01 a | 0.24 ± 0.01 c |
H19/6 | 0.85 ± 0.01 d | 0.50 ± 0.03 a |
H18/6 | 0.48 ± 0.01 h | 0.44 ± 0.03 b |
H4/44 | 0.55 ± 0.01 ef | 0.12 ± 0.01 k |
Mean | 0.54 ± 0.24 | 0.17 ± 0.14 |
TPC | TTC | TFC | TAC | Lycopene | Β-Carotene | DPPH• | |
---|---|---|---|---|---|---|---|
TPC | 1 | 0.487 ** | 0.501 ** | 0.378 * | −0.094 | 0.232 | 0.599 ** |
TTC | 0.487 ** | 1 | 0.446 ** | 0.090 | −0.246 | −0.383 * | 0.519 ** |
TFC | 0.501 ** | 0.446 ** | 1 | 0.414 ** | 0.294 | 0.281 | 0.841 ** |
TAC | 0.378 * | 0.090 | 0.414 ** | 1 | −0.084 | 0.312 * | 0.613 ** |
Lycopene | −0.094 | −0.246 | 0.294 | −0.084 | 1 | 0.254 | 0.188 |
Β-carotene | 0.232 | −0.383 * | 0.281 | 0.312 * | 0.254 | 1 | 0.253 |
DPPH• | 0.599 ** | 0.519 ** | 0.841 ** | 0.613 ** | 0.188 | 0.253 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilă, M.F.; Vijan, L.E.; Cosmulescu, S. Biochemical Profile and Antioxidant Activity of Fresh Fruits from Apple Genotypes. Appl. Sci. 2025, 15, 2534. https://doi.org/10.3390/app15052534
Gavrilă MF, Vijan LE, Cosmulescu S. Biochemical Profile and Antioxidant Activity of Fresh Fruits from Apple Genotypes. Applied Sciences. 2025; 15(5):2534. https://doi.org/10.3390/app15052534
Chicago/Turabian StyleGavrilă, Marian Florin, Loredana Elena Vijan, and Sina Cosmulescu. 2025. "Biochemical Profile and Antioxidant Activity of Fresh Fruits from Apple Genotypes" Applied Sciences 15, no. 5: 2534. https://doi.org/10.3390/app15052534
APA StyleGavrilă, M. F., Vijan, L. E., & Cosmulescu, S. (2025). Biochemical Profile and Antioxidant Activity of Fresh Fruits from Apple Genotypes. Applied Sciences, 15(5), 2534. https://doi.org/10.3390/app15052534