O/C Isotopic and EPR Signature of Marble from the Apuan Alps (Italy): A Critical Review
Abstract
:1. Introduction
- -
- Documental analysis carried out on commercial and historical text and archives that report the orders, origin and types of stone in the materials used.
- -
- Technical analysis including petrographic, mineralogical, geochemical and isotopic analyses allowing the attribution to a lithotype based on existing databases (DBs).
- -
- Expert evaluation carried out by professionals, based on their knowledge and regarding lithology, stone grain size, texture and warp.
- -
- The origin of the carbonate: chemical precipitate or organic mud.
- -
- The composition of water present during diagenesis and its later history.
- -
- The temperature of metamorphism and its thermal gradient.
- -
- Fractionation with pore waters and other mineral phases during metamorphism.
- -
- The protolith was deposited and underwent diagenesis in a uniform environment.
- -
- Isotopic equilibrium was attained and maintained during sedimentation or metamorphism.
- -
- The marble unit is homogeneous, preferably almost pure carbonate, and thick enough.
- -
- The metamorphic gradient was not too steep.
- -
- The exchange between the carbonates and accessory silicates or oxides within the marble or near its contact with other formations.
- -
- A steep metamorphic gradient; a thermal gradient of 15 °C/km or less is not a problem, while a gradient towards 30 °C/km results into a great range in δ18O values.
- -
- Significant weathering of the analysed sample.
2. Material and Methods
2.1. Geological Setting
2.1.1. Sedimentary Protolith
- -
- External ramp with carbonate muds deposited under the wave base.
- -
- High-energy zone with oolithic and coarse well-sorted and -washed sediments deposited in high-energy shores and tidal channels.
- -
- Internal lagoon with fine and pure carbonate mud sedimentation.
- -
- Restricted lagoon with fine and pure carbonate mud sedimentation containing residues of abundant organic and oxide material.
- -
- Tidal zone with carbonate-dolomitic deposits.
- -
- Emerged and karst areas with karst features and residual soils.
2.1.2. Tectono-Metamorphic Deformation
2.1.3. Characteristic of the AAMs
- -
- Marmo dolomitico: Dolomite is abundant, has a rhombohedral habit, ranges in size from 0.2 to 0.4 mm of diameter and shows sharp boundaries. In the marble layers, calcite has an average grain size of 0.1 mm; in this lithotype, there are also regions with larger calcite crystals (0.3 to 0.8 mm) containing twins and gliding surfaces. Calcite grain size decreases to micro-crystalline (<0.05 mm) where there are dolomite or second-phase particles. Boundaries are indented or suturated towards the Venato Forte and become progressively curved or gently curved toward the Venato.
- -
- Venato forte: Venato appears strongly heterogeneous in crystal size, ranging from <0.3 to 0.5 mm; some regions, aligned in the verso, are characterised by the presence of twinned crystals whose size is larger than average (0.2 to 0.3 mm). The grey bands aligned in the verso number particles of additional phases and the presence of regions of calcite micro-crystals (<0.01 mm) comprising totally, or in part, the grey veins. Dolomite is present as rhombohedral crystals close to phyllosilicate layers, ranges from 0.1 to 0.2 mm and in some cases possesses a core and rim structure. Phyllosilicates (white mica and chlorite) are widespread in the calcite matrix or concentrated in sub-millimetric layers within which there are abundant particles of accessory minerals with a 0.01 mm average diameter. Phyllosilicates are dimensionally elongated in the main schistosity and behave as strong fibres driving the shape of calcite, whose boundaries in this case are always very sharp and straight.
- -
- Venato: Calcite crystals range from 0.1 to 0.4 mm with boundaries gently concavely curved outwards or sharp and polygonal in the smaller ones. Laying parallel with the main schistosity, regions of larger calcite crystals (0.4 to 0.8 mm) occur, where calcite presents twins and gliding surfaces and indented or suturated boundaries. Veins result, enriched in dolomite and additional minerals. Dolomite crystals are generally larger than calcite ones and isolated from each other. Their boundaries are sharp, and rhombohedral gliding planes can be present.
- -
- Venatino: Calcite crystals have the same features as the Venato, but sizes are clustered at 0.2–0.4 mm and relics of twinning and gliding surfaces become rare. Dolomite crystals are rare, but always with a rhombohedral habit.
- -
- Breccia: The matrix appears to be formed by very small calcite crystals (<0.05 mm), accessory mineral particles and rarer dolomite with a rhombohedral habit (size 0.2–0.3 mm). Clasts consist of calcite crystals, with sizes ranging from 0.2 to 0.4 mm, which have the same features as in the Venato.
- -
- Ordinario and Statuario: They consist exclusively of calcite crystals, whose sizes are clustered around the mean (from 0.3 to 0.8 mm). Relics of twins and glide surfaces are common. Calcite crystals often show bands of light undulated extinction; the boundaries are fairly sharp but indented.
- -
- Bardiglio: Calcite crystals have sizes from 0.05 to 0.1 mm in the dark grey background, whereas they range from 0.2 to 0.4 mm in the white stains; quartz is present even if in very small amounts.
2.2. Synthesis
- -
- The AAMs and the Calcare Massiccio formed contiguously in a wide Hettangian carbonate platform of the western side of the Tethyan Gulf.
- -
- This carbonate platform was organised into continuous environments grading from the external ramp, in the south, to the inner tidal flat, in the north; each one of these environments corresponds to a different facies and grain size that had some correspondence with the different types of AAMs.
- -
- During the Hettangian, the δ18O and δ13C isotope ‱PDB increased due to general warming, whereas it decreased in the Sinemurian.
- -
- Tectono-metamorphic deformation occurred at T at 300 to 450 °C and P up to 0.6–0.8 GPa, with a geothermal gradient of about 30–35 °C/km, with a slight difference between the lowermost and uppermost structural levels.
- -
- No fluid was added to the AAM core body during the tectono-metamorphic deformation, and fluids from the embedding formations were incorporated during the last ductile–brittle deformation stage in the boundary portions of the AAMs.
- -
- Some AAMs derive directly from the different carbonate platform facies, others from the Ammonitic Rosso, others from the ductile strong inter-fingering of marble and others from lithologies in high-strain shear zones.
- -
- For the O/C isotope analysis, the main features usually taken into account are the fabric, crystal boundary shape and Maximum Grain Size (MGS). Referring to the AAM features, as outlined above, discrimination by means of these features is difficult, and, in particular, the MGS as obtained for those analyses appears to have a very limited significance, even for attributing the sample to a specific AAM type, because the discriminating grain-size feature is the modal distribution and not the maximum.
2.3. Exploitation History and Uses
2.4. Database Definition
3. Discussion
3.1. O/C Isotope Discrimination by TM, LS and HISTORY
3.2. EPR Discrimination by TM, LS and HISTORY
3.3. Overall DB Analysis by TM, LS and HISTORY
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pensabene, P. Marmi pubblici e marmi privati. In Archeologia Classica, Nuova Serie, LXVI—n.s. II, 5; L’Erma di Bretschneider ed.: Rome, Italy, 2015; pp. 575–593. [Google Scholar]
- Dolci, E. Carrara Cave Antiche; Comune di Carrara: Carrara, Italy, 1980. [Google Scholar]
- Pensabene, P. Amministrazione dei marmi e sistema distributivo nel mondo romano. In A cura di, Marmi antichi; Borghini, G., Ed.; De Luca Edizioni d’Arte: Roma, Italy, 1989; pp. 43–53. [Google Scholar]
- Pensabene, P. Marmi Antichi II. Cave e Tecnica di Lavorazione, Provenienze, Distribuzione; L’Erma di Bretschneider: Roma, Italy, 1998. [Google Scholar]
- Franzini, M. Il marmo della Punta Bianca (La Spezia): L’estrazione di “marmo lunense” in epoca romana ebbe inizio da questo giacimento; Acta apuana, II, 2003, 33–39. Available online: http://www.actapuana.it/ (accessed on 18 February 2025).
- Coli, M.; Criscuolo, A. The Carrara Marble: Geology, geomechanics and quarrying; Mechanics and Rock Engineering, from Theory to Practice. IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 012120. [Google Scholar] [CrossRef]
- Craig, H.; Craig, V. Greek marbles: Determination of provenance by isotopic analysis. Science 1972, 176, 401–403. [Google Scholar] [CrossRef]
- Herz, N. Isotopic analysis of marble. In Archaeological Geology; Rapp, G., Jr., Gifford, J.A., Eds.; Yale University Press: New Haven, CN, USA, 1985; pp. 331–351. [Google Scholar]
- Herz, N. The oxygen and carbon isotopic database for classical marble. In Classical Marble: Geochemistry, Technology, Trade; Herz, N., Waelkens, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 305–314. [Google Scholar]
- Attanasio, D.; Brilli, M.; Ogle, N. The Isotopic Signatures of Classical Marbles; L’Erma di Bretschneider: Rome, Italy, 2006; 279p. [Google Scholar]
- Antonelli, F.; Lazzarini, L. An updated petrographic and isotopic reference database for white marbles used in antiquity. Rend. Fis. Acc. Lincei. 2015, 26, 399–413. [Google Scholar] [CrossRef]
- Herz, N.; Dean, N.E. Stable isotopes and archaeological geology: The Carrara marble, northern Italy. Appl. Geochem. 1986, 1, 139–151. [Google Scholar] [CrossRef]
- Attanasio, D.; Platania, R. The Provenance of White Classical Marbles; 1997. Available online: https://www.lerma.it/libro/9788882653781 (accessed on 18 February 2025).
- Armiento, G.; Attanasio, D.; Platania, R. Electron spin resonance study of white marbles from Thmos (Sardinia): A reappraisal of the technique, possibilities and limitations. Archaeometry 1997, 39, 309–319. [Google Scholar] [CrossRef]
- Attanasio, D. Ancient White Marbles: Analysis and Identification by Paramagnetic Resonance Spectroscopy; L’Erma di Bretschneider: Rome, Italy, 2003; 281p. [Google Scholar]
- Attanasio, D.; Bruno, M.; Prochaska, W.; Yavuz, A.B. A multimethod database of the black and white marbles of Göktepe (Aphrodisias), including isotopic, EPR, trace and petrographic data. Archaeometry 2015, 57, 217–245. [Google Scholar] [CrossRef]
- Carmignani, L.; Gattiglio, M.; Kälin, O.; Meccheri, M. Guida All’escursione sul Complesso Metamorfico delle Alpi Apuane; Atti della Summer School “Geologia e Petrologia dei Basamenti Cristallini”; CNR-University: Siena, Italy, 1987; 110p. [Google Scholar]
- Coli, M. Lithostructural assemblage and deformation history of “Carrara Marble”. Boll. Soc. Geol. It. 1989, 108, 581–590. [Google Scholar]
- Coli, M. Geostructural and geomechanical setting of the Carrara Marble quarries, Italy. In Proceedings of the Mechanics of Jointed and Faulted Rock, MJFR2, Vienna, Austria, 10–14 April 1995; pp. 291–296. [Google Scholar]
- Coli, M. Geomechanical characterisation of Carrara Marble. In Proceedings of the ISRM Regional Symposium, EUROCK2001, Espoo, Finland, 4–6 June 2001; pp. 53–57. [Google Scholar]
- Coli, M.; Fazzuoli, M. Evoluzione sedimentaria dell’area apuana nel Triassico-Liassico. Studi Geologici Camerti 1992, 2, 193–201. [Google Scholar]
- Coli, M.; Fazzuoli, M. Considerazioni sulla litostratigrafia e sull’evoluzione sedimentaria dei terreni metamorfici reticoliassici delle Alpi Apuane. Atti Ticin. Sc. Terra 1992, 35, 43–60. [Google Scholar]
- Coli, M.; Pini, G.; Piccini, L.; Mariottoni, E. Studi conoscitivi sui Bacini Marmiferi Industriali di Carrara: Un contributo per la gestione pianificata dell’attività; GEAM—Quaderni di Studio e Documentazione: Bergamo, Italy, 2002; Volume 24, p. 104. [Google Scholar]
- Ottria, G.; Molli, G. Superimposed brittle structures in the late-orogenic extension of the Northern Apennine: Results from the Carrara area (Alpi Apuane, NW Tuscany). Terra Nova 2008, 12, 52–59. [Google Scholar] [CrossRef]
- Molli, G. Introduzione alla Geologia e ai Marmi delle Alpi Apuane; Le raccolte di Diamante, applicazioni & tecnologia, Il Marmo nella storia, Università di Parma: Parma, Italy, 2009; pp. 1–6. Available online: www.gmassdiamante.com (accessed on 25 October 2024).
- Carmignani, L.; Conti, P.; Massa, G.; Pieruccini, D.; Xhixha, E.; Khyabani, F.R. Geological structures affecting the marble mining in the Apuan Alps (Northern Apennines). It. J. Eng. Geol. Environ. Sp. Is. 2017, 2, 22–39. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Ogg, J.G.; Ogg, G.M.; Gradstein, F.M. A Concise Geological Time Scale; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Fazzuoli, M. Frammentazione e annegamento della piattaforma del Calcare Massiccio (Lias Inferiore)-nell’area Toscana. Mem. Soc. Geol. It. 1980, 21, 181–191. [Google Scholar]
- Fazzuoli, M.; Ferrini, G.; Pandeli, E.; Sguazzoni, G. Le formazioni giurassico-mioceniche della Falda Toscana a nord dell’Arno: Considerazioni sull’evoluzione sedimentaria. Mem. Soc. Geol. It. 1985, 30, 159–201. [Google Scholar]
- Coli, M.; Pandeli, E. La geologia delle Alpi Apuane. In Proceedings of the Guida alla Traversata dell’Appennino Settentrionale, Atti 76a Riunione Estiva della S.G.I., Firenze, Italy, 16–20 September 1992; pp. 79–103. [Google Scholar]
- Carmignani, L.; Conti, P.; Meccheri, M.; Molli, G. Geology of the Alpi Apuane metamorphic complex (Alpi Apuane, Central Italy). In 32nd IGG, Firenze. Post-Congress Field Trip Guide Book—P38; APAT: Rome, Italy, 2004; Volume 5, pp. 3–36. [Google Scholar]
- Conti, P.; Carmignani, L.; Massa, G.; Meccheri, M.; Patacca, E.; Scandone, P.; Pieruccini, D. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50,000, Foglio 249 Massa Carrara; ISPRA: Roma, Italy, 2019. [Google Scholar]
- Kligfield, R.; Carmignani, L.; Owens, W.H. Strain analysis of a Northern Apennine shear zone using deformed marble breccias. J. Struct. Geol. 1981, 3, 421–436. [Google Scholar] [CrossRef]
- Kligfield, R.; Hunziker, J.; Dallmeyer, R.D.; Schamel, S. Dating of deformation phases using K/Ar and 40Ar/39Ar techniques: Results from the Northern Apennines. J. Struct. Geol. 1986, 8, 781798. [Google Scholar] [CrossRef]
- Coli, M. Times and mode of uplift of the Apuan Alps metamorphic complex. Atti Ticin. Sc. Terra 1989, 32, 47–56. [Google Scholar]
- Montomoli, C.; Ruggieri, G.; Carosi, R.; Dini, A.; Genovesi, M. Fluid source and pressure-temperature conditions of high-salinity fluids in syn-tectonic veins from the Northeastern Apuan Alps (Northern Apennines, Italy). Phys. Chem. Earth 2005, 30, 1005–1019. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Maineri, C.; Lattanzi, P.; Ruggieri, G. Fluid circulation in the Apuane Alps core complex: Evidence from extension veins in the Carrara marble. Min. Mag. 1999, 63, 111–122. [Google Scholar] [CrossRef]
- Molli, G.; Heilbronner, R. Microstructures associated with static and dynamic recrystallization of Carrara marble (Alpi Apuane, NW Tuscany, Italy). Geol. Mijnb. 1999, 78, 119–126. [Google Scholar] [CrossRef]
- Molli, G.; Conti, P.; Giorgetti, G.; Meccheri, M.; Oesterling, N. Microfabric study on the deformational and thermal history of the Alpi Apuane marbles (Carrara marbles), Italy. J. Struct. Geol. 2000, 22, 1809–1825. [Google Scholar] [CrossRef]
- Fruh-Green, G.L.; Olgard, D.L.; Coli, M. Stable isotope evidence for closed system behaviour during metamorphism and deformation of Triassic platform carbonates (Carrara, Italy). In Proceedings of the A.G.U. Annual Meeting, San Francisco, CA, USA, 3–7 December 1990. [Google Scholar]
- Olgaard, D.L. The role of second phase in localizing deformation. Geol. Soc. Sp. Publ. 1990, 54, 175–181. [Google Scholar] [CrossRef]
- Paterson, M.S. Superplasticity in geological materials. Mat. Res. Soc. Symp. Proc. 1990, 196, 303–312. [Google Scholar] [CrossRef]
- Schubnel, A.; Fortin, J.; Burlini, L.; Guéguen, Y. Damage and Recovery of Calcite Rocks Deformed in the Cataclastic Regime. Geol. Soc. Lond. Spec. Publ. 2005, 245, 203–209. [Google Scholar] [CrossRef]
- Coli, M. Underground exploitation of the Carrara Marble. In Modern Tunneling Science and Technology, Proceedings of the International Symposium on Modern Tunneling Science and Technology (IS-Kyoto 2001) Kyoto, Japan, 30 October–1 November 2001; A.A. Balkema: Cape Town, South Africa, 2001; pp. 1045–1050. [Google Scholar]
- Fazzuoli, M.; Sguazzoni, G. Jurassic and Cretaceous isotopic zones in the Tuscan domain. Mem. Soc. Geol. It. 1985, 31, 59–84. [Google Scholar]
- Bruschi, G.; Criscuolo, A.; Paribeni, E.; Zanchetta, G. 14C-dating from an old quarry waste dump of Carrara marble (Italy): Evidence of pre-Roman exploitation. J. Cult. Herit. 2004, 5, 3–6. [Google Scholar] [CrossRef]
- Franzini, M. La ripresa, in epoca medievale, dell’estrazione del marmo nella Toscana costiera. In Ante et Post Lunam. Reimpiego e Ripresa Rstrattiva Dei Marmi Apuani: II—L’evo Medio IV-V (Acta Apuana); Edizioni: Carrara, Italy, 2006; pp. 45–57. [Google Scholar]
- Coli, M.; Grandini, G. Evoluzione e compatibilità ambientale dell’attività estrattiva del marmo di Carrara. GEAM 1994, 83, 111–116. [Google Scholar]
- Nicolini, P.; Ozioso, S. L’escavazione del marmo in epoca romana. In Carrara e le Vie del Marmo; Paribeni, E., Ed.; Geopop: La Spezia, Italy, 2002; pp. 23–35. [Google Scholar]
- Paolicchi, C. Sogni di Marmo; Bandecchi , M., Vivaldi, G., Eds.; Bandecchi: Pontedera, Italy, 2016; 439p. [Google Scholar]
- Attanasio, D.; Armiento, G.; Brilli, M.; Emanuele, M.C.; Platania, R.; Turi, B. Multi-method marble provenance determinations: The Carrara Marble as a case study for the use of isotopic, electron spin resonance and petrographic data. Archaeometry 2000, 42, 257–272. [Google Scholar] [CrossRef]
- Di Benedetto, F.; Buccianti, A.; Montegrossi, G.; Innocenti, M.; Massa, C.A.; Pardi, L.; Romanelli, M. EPR discrimination of microcrystalline calcite geomaterials. Am. Miner. 2012, 97, 1619–1626. [Google Scholar] [CrossRef]
- Templ, M.; Filzmoser, P.; Hron, K. robCompositions, version 2.1.0; Compositional Data Analysis. 2009. Available online: https://CRAN.R-project.org/package=robCompositions (accessed on 9 September 2024).
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 23 August 2024).
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Attanasio, D.; Bruno, M.; Prochaska, W.; Javuz, A.B. Ancient “black” decorative stones and the Ephesian origin of sculptural Bigio Antico. Archaeometry 2017, 59, 794–814. [Google Scholar] [CrossRef]
AAM Type | Facies | Features | Grain Size |
---|---|---|---|
Zebrino | External ramp (Ammonitico Rosso, marly calcareous facies) | Thick alternating of white and grey layers following the verso | White 0.2 to 0.4 mm Grey < 0.1 mm |
Cremo | External ramp (Ammonitico Rosso, calcareous facies) | Pale pink | 0.2 to 0.4 mm |
Bardiglio | Restricted lagoon | Dark grey with white stains elongated in the verso | Grey < 0.1 mm White 0.2 to 0.4 mm |
Statuario | Beach, tidal channels | Ivory white | 0.6 to 0.8 mm |
Ordinario | Inner lagoon | White, pale white, with pale grey stains | 0.3 to 0.6 mm |
Breccia | Fault scarp, sinking fractures | White clasts, grey matrix | Matrix < 0.05 mm Clasts 0.2 to 0.4 mm |
Paonazzo, Calacatta | Karst and emerged areas | Pale white with pale grey and pale pink flames | Pale white 0.4 to 0.6 mm Flames 0.05 to 0.1 mm |
Venato forte | External ramp | Thick alternating strikes of white and grey along the verso | White 0.2 to 0.4 mm Grey < 0.1 mm |
Venatino | Inner lagoon shores | White with rare pale grey strikes along the verso | White 0.2 to 0.4 mm Grey < 0.1 mm |
Venato | External lagoon | White with pale grey strikes along the verso | White 0.1 to 0.4 mm Grey < 0.1 mm |
Marmo dolomitico | Upper intertidal flat | Alternating layers of pale grey marble and white dolomite marking the verso | Dolomite 0.2 to 0.4 mm Calcite 0.3 to 0.8 mm |
Quarry | Roman | Renaissance | History | Type of Marble | District | Quarry Site | Structural Level |
---|---|---|---|---|---|---|---|
Artana | A | NA | 1 | Venato | Carrara | Colonnata | 8 |
Bacchiotto | A | NA | 1 | Venato | Carrara | Colonnata | 9 |
Battaglino | NA | A | 2 | Statuario-Ordinario | Carrara | Torano | 8 |
Boccanaglia | NA | A | 2 | Paonazzo-Venato | Carrara | Boccanaglia | 9 |
Calagio | A | NA | 1 | Nuvolato-Venato | Carrara | Colonnata | 7 |
Canalgrande | A | NA | 1 | Venato | Carrara | Miseglia | 7 |
Cervaiole | NA | A | 2 | Venato | Seravezza | Altissimo | 4 |
Collestretto | A | A | 3 | Statuario | Carrara | Torano | 8 |
Grotta Colombara | NA | A | 2 | Ordinario | Carrara | Torano | 8 |
Corvaia-Ceragiola | A | A | 3 | Ordinario | Seravezza | Seravezza | 6 |
Crestola | A | A | 3 | Statuario | Carrara | Boccanaglia | 9 |
Crocifisso | NA | A | 2 | Venato | Carrara | Boccanaglia | 9 |
Fossa del Cecchino | NA | A | 2 | Statuario-Paonazzo | Carrara | Boccanaglia | 9 |
Facciata | A | A | 3 | Ordinario | Carrara | Torano | 8 |
Fantiscritti | A | A | 3 | Ordinario | Carrara | Miseglia | 7 |
Finestra | A | NA | 1 | Venato | Carrara | Miseglia | 7 |
Finocchioso | NA | A | 2 | Venato | Carrara | Boccanaglia | 9 |
Fondone | NA | A | 2 | Ordinario | Massa | Frigido | 4 |
Fossacava | A | NA | 1 | Nuvolato | Carrara | Colonnata | 7 |
Fusarolo | NA | A | 2 | Bardiglio | Carrara | Boccanaglia | 9 |
Gioia | A | NA | 1 | Venato | Carrara | Colonnata | 6 |
La Mossa | NA | A | 2 | Arabescato | Seravezza | Altissimo | 4 |
La Para | A | A | 3 | Venato | Carrara | Boccanaglia | 9 |
La Tagliata | A | NA | 1 | Ordinario | Carrara | Miseglia | 7 |
Mandria | A | A | 3 | Cremo-Statuario | Carrara | Boccanaglia | 9 |
Mortarola | NA | A | 2 | Venato | Carrara | Boccanaglia | 9 |
Pianello | NA | A | 2 | Ordinario | Carrara | Torano | 8 |
Piastraio | NA | A | 2 | Breccia-Bardiglio | Carrara | Seravezza | 6 |
Poggio Dovizio | A | A | 3 | Statuario | Carrara | Torano | 8 |
Polvaccio | A | A | 3 | Statuario-Ordinario | Carrara | Torano | 8 |
Porcinacchia | NA | A | 2 | Statuario-Paonazzo | Carrara | Torano | 8 |
Ravaccione | A | NA | 1 | Ordinario | Carrara | Torano | 8 |
Ruggeta | NA | A | 2 | Calacatta-Bardiglio | Carrara | Boccanaglia | 9 |
Scalocchiella | A | A | 3 | Ordinario | Carrara | Colonnata | 6 |
Scaloni | A | NA | 1 | Ordinario | Carrara | Miseglia | 7 |
Sponda | A | A | 3 | Statuario | Carrara | Boccanaglia | 9 |
Strinato | A | NA | 1 | Ordinario | Carrara | Miseglia | 7 |
Tacca Bianca | NA | A | 2 | Statuario | Seravezza | Altissimo | 4 |
Tarnone | A | NA | 1 | Nuvolato | Carrara | Colonnata | 8 |
Trambiserra | NA | A | 2 | Ordinario | Seravezza | Stazzema | 6 |
Trugiano | A | NA | 1 | Ordinario | Carrara | Colonnata | 7 |
Vara | A | NA | 1 | Venato | Carrara | Boccanaglia | 9 |
Zampone | A | A | 3 | Statuario | Carrara | Boccanaglia | 9 |
Constraining Features | AAM Situation | Verified |
---|---|---|
Origin of the carbonate: chemical precipitate or organic mud | Organic mud | Yes |
Composition of water associated during diagenesis and its later history | Warming with increasing of the δ18O and δ13C values | No |
Marble unit is homogeneous and preferably almost pure carbonate and thick | Most contain 97% calcite | Yes |
Protolith was deposited and underwent diagenesis in a uniform environment | Carbonate platform with several environments and sedimentary facies | No |
Temperature of metamorphism and its thermal gradient—thermal metamorphic gradient of 15 °C/km or less is not a problem, while a gradient towards 30 °C/km resulted into a great range of δ18O values | Temperature about 380–400 °C Thermal gradient up to 30–35 °C/km | No |
Fractionation with pore waters and other mineral phases during metamorphism | No, almost pure calcite | No |
Isotopic equilibrium was attained and maintained during sedimentation or metamorphism | Exchange between the marble and the embedding lithologies occurred near the contacts | No everywhere |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coli, M.; Di Benedetto, F.; Buccianti, A. O/C Isotopic and EPR Signature of Marble from the Apuan Alps (Italy): A Critical Review. Appl. Sci. 2025, 15, 2533. https://doi.org/10.3390/app15052533
Coli M, Di Benedetto F, Buccianti A. O/C Isotopic and EPR Signature of Marble from the Apuan Alps (Italy): A Critical Review. Applied Sciences. 2025; 15(5):2533. https://doi.org/10.3390/app15052533
Chicago/Turabian StyleColi, Massimo, Francesco Di Benedetto, and Antonella Buccianti. 2025. "O/C Isotopic and EPR Signature of Marble from the Apuan Alps (Italy): A Critical Review" Applied Sciences 15, no. 5: 2533. https://doi.org/10.3390/app15052533
APA StyleColi, M., Di Benedetto, F., & Buccianti, A. (2025). O/C Isotopic and EPR Signature of Marble from the Apuan Alps (Italy): A Critical Review. Applied Sciences, 15(5), 2533. https://doi.org/10.3390/app15052533