Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sunflower Husk Ashes Composition
3.2. Commissioning of Full-Scale Technology and Adjustment of Process Parameters
3.3. Mixing of Sunflower Husk Ashes from Different Sources for Granulation
3.4. Analyzing of the Applicability of Sunflower Husk Ashes Granules as Bio-Fertilizer
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. Available online: https://www.fao.org/about/about-fao/en/ (accessed on 20 January 2025).
- UNEP Food Waste Index Report 2021. Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021?utm_source=chatgpt.com (accessed on 20 January 2025).
- Ng, H.S.; Kee, P.E.; Yim, H.S.; Chen, P.; Wei, H.; Lan, J.W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 2020, 302, 122889. [Google Scholar] [CrossRef]
- Ngangnchi, F.H.; Aquilas, N.A.; Mbella, M.E. Natural resource use, industrialization and climate change in Africa: Blueprints for sustainable regional development. Res. Glob. 2024, 9, 100245. [Google Scholar] [CrossRef]
- Usman, M.; Balsalobre-Lorente, D. Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Energy Policy 2022, 162, 112780. [Google Scholar] [CrossRef]
- Pagey, S.V.; Nagar, C.S. Waste Management in Food and Agricultural Industries. Futuristic Trends in Agriculture Engineering & Food Sciences; Iterative International Publishers (IIP), Selfypage Developers Pvt Ltd.: Chikkamagaluru, India, 2024; pp. 555–561. [Google Scholar]
- Petrov, P.; Zgureva-Filipova, D.; Filipov, K.; Ganev, I. Analysis of the overall potential for electricity production from farm animals manure in Bulgaria. IOP Conf. Ser. Earth Environ. Sci. 2023, 1128, 012001. [Google Scholar] [CrossRef]
- Hale, A.; Köker, A.R. Analyzing and mapping agricultural waste recycling research:An integrative review for conceptual framework and future directions. Resour. Policy 2023, 85, 103987. [Google Scholar] [CrossRef]
- Raimi, A.; Roopnarain, A.; Adeleke, R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. Sci. Afr. 2021, 11, e00694. [Google Scholar] [CrossRef]
- Yunus, M.U.; Silas, K.; Yaum, A.L.; Kwaji, B.H. A Review of Biofertilizer Production: Bioreactor, Feedstocks and Kinetics. SSRG Int. J. Recent Eng. Sci. 2022, 9, 39–49. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology; Majeti Narasimha Vara Prasad, M.N.P., Ed.; Agrochemicals Detection, Treatment and Remediation; Butterworth-Heinemann: Oxford, UK, 2020; Chapter 2; pp. 25–54. ISBN 9780081030172. [Google Scholar] [CrossRef]
- Bharti, N.; Suryavansh, M. Chapter 10-Quality control and regulations of biofertilizers: Current scenario and future prospects. Biofertilizers 2021, 1, 133–141. [Google Scholar] [CrossRef]
- Hassan, D.U.; Abdulsalam, S. Assessement of Bio-fertilizer Quality of Anaerobic Digestion of Watermelon Peels and Cow Dung. Chem. Biomol. Eng. 2017, 2, 135–141. [Google Scholar] [CrossRef]
- Shehata, M.M.; El-Khawas, S.S. Effect of Two Biofertilizers on Growth Parameters, Yield Characters, Nitrogenous Components, Nucleic Acids Content, Minerals, Oil Content, Protein Profiles and DNA Banding Pattern of Sunflower (Helianthus annus L. cv. Vedock) Yield. Pak. J. Biol. Sci. 2003, 6, 1257–1268. [Google Scholar] [CrossRef]
- Finore, I.; Romano, I.; Leone, L.; Di Donato, P.; Nicolaus, B.; Poli, A.; Lama, L. Biomass Valorization: Sustainable Methods for the Production of Hemicellulolytic Catalysts from Thermoanaerobacterium thermostercoris strain BUFF. Resources 2021, 10, 115. [Google Scholar] [CrossRef]
- Pociene, O.; Šlinkšiene, R. Properties and Production Assumptions of Organic Biofertilisers Based on Solid and Liquid Waste from the Food Industry. Appl. Sci. 2024, 14, 9784. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Barłóg, P.; Spizewski, T.; Grzebisz, W. Bio-Fertilizers Based on Digestate and Biomass Ash as an Alternative to Commercial Fertilizers—The Case of Tomato. Agronomy 2021, 11, 1716. [Google Scholar] [CrossRef]
- Nramat, W.; Traiphat, W.; Sukruan, P.; Utaprom, P.; Namgaew, S.; Sodajaroen, S.; Chatpuk, R.; Phetduang, L. Development of a Bio-Fertilizer Machine (Holmon Egg) Integrated with NPK Sensor Technology for Enhancing Organic Vegetable Production in Sufficiency Community Enterprises. Int. J. Geoinform. 2024, 20, 8–16. [Google Scholar] [CrossRef]
- Czekała, W.; Jeżowska, A.; Chełkowski, D. The Use of Biochar for the Production of Organic Fertilizers. J. Ecol. Eng. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Ibáñez, A.; Garrido-Chamorro, S.; Vasco-Cárdenas, M.F.; Barreiro, C. From Lab to Field: Biofertilizers inthe 21st Century. Horticulturae 2023, 9, 1306. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Agricultural_production_-_crops (accessed on 20 January 2025).
- Report of Bulgarian Ministry of Agriculture and Food. Yields from Field Crops–(June 2024) Harvest 2023 No. 441. Available online: https://www.mzh.government.bg/en/ (accessed on 20 January 2025).
- Isemin, R.; Tabet, F.; Nebyvaev, A.; Kokh-Tatarenko, V.; Kuzmin, S.; Milovanov, O.; Klimov, D.; Mikhalev, A.; Dobkin, S.; Zhulaev, Y. Prediction of the Behavior of Sunflower Husk Ash after Its Processing by Various Torrefaction Methods. Energies 2022, 15, 7483. [Google Scholar] [CrossRef]
- Paleckienė, R.; Sviklas, A.M.; Šlinkšienė, R.; Štreimikis, V. Complex Fertilizers Produced from the Sunflower Husk Ash. Pol. J. Environ. Stud. 2010, 19, 973–979. [Google Scholar]
- Akca, M.O.; Bozkurt, P.A.; Gokmen, F.; Akca, H.; Yagcıogluq, K.D.; Uygur, V. Engineering the biochar surfaces through feedstock variations and pyrolysis temperatures. Ind. Crops Prod. 2024, 218, 118819. [Google Scholar] [CrossRef]
- Somba, B.E.; Napitupulu, M.; Walanda, D.K.; Anshary, A.; Talo, W.S. Optimizing the Performance of Sunflower (Helianthus annuus L.) Seed Shell-Derived Biochar for Lead Ion Adsorption. Int. J. Des. Nat. Ecodyn. 2024, 19, 259–265. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, C.; Liu, R.; Li, S.; Wang, M. Sunflower straw ash as an alternative activator in alkali-activated grouts: A new 100% waste-based material. Ceram. Int. 2023, 49, 32308–32312. [Google Scholar] [CrossRef]
- Dahunsi, S.O.; Ogunwole, O.J. Biofertilizer production systems: Industrial insights. Biofertilizers 2021, 1, 21–30. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Janas, R.; Grzesik, M. Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract fromWater Plants Sequestering CO2 in Sorghum Crops. Molecules 2024, 29, 4397. [Google Scholar] [CrossRef] [PubMed]
- Rushan, G.; Sotnikov, V. Characteristics of granulated activated carbon from a mixture of plant raw material waste. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2024, 335, 196–205. [Google Scholar] [CrossRef]
- Mirparsa, T.; Ganjali, H.R.; Dahmardeh, M. The Effect of Bio Fertilizers on Yield and Yield Components of Sunflower Oil Seed and Nut. Int. J. Agric. Biosci. 2016, 5, 46–49. [Google Scholar]
- Yelatontsev, D.; Mukhachev, A. Utilizing of sunflower ash in the wet conversion of phosphogypsum—A comparative study. Environ. Chall. 2021, 5, 100241. [Google Scholar] [CrossRef]
- Șerbănoiu, A.A.; Gradinaru, C.M.; Cimpoesu, N.; Filipeanu, D.; Serbanoiu, B.V.; Chereches, C.C. Study of an Ecological Cement-Based Composite with a Sustainable Raw Material, Sunflower Stalk Ash. Materials 2021, 14, 7177. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, A.M.; Lipkovich, E.I.; Kachanova, L.S. Control of Technological Processes of Organic Fertilizers Application as a Tool to Ensure Food Safety. J. Environ. Manag. Tour. 2018, 9, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mohanty, S.; Sahu, G.; Rana, M.; Pilli, K. Biochar: A Sustainable Approach for Improving Soil Health and Environment. In Soil Erosion-Current Challenges and Future Perspectives in a Changing World; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Abelenda, A.M.; Amaechi, C.V. Manufacturing of a Granular Fertilizer Based on Organic Slurry and Hardening Agent. Inventions 2022, 7, 26. [Google Scholar] [CrossRef]
- Sarlaki, E.; Kermani, A.M.; Kianmehr, M.H.; Vakilian, K.A.; Bandbafha, H.H.; Ma, N.L.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. Inventions 2021, 285, 117412. [Google Scholar] [CrossRef]
- Prabhakaran, K.; Warrier, K.G.K.; Rohatgi, P.K. Preparation of free flowing fly ash granules containing multifunctional molecules. Ceram. Int. 2001, 27, 749–754. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products:A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Chapter Two-Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar] [CrossRef]
- Buneviciene, K.; Drapanauskaite, D.; Mazeika, R.; Tilvikiene, V.; Baltrusaitis, J. Granulated biofuel ash as a sustainable source of plant nutrients. Waste Manag. Res. 2021, 39, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, J.; Kuokkanen, T.; Rautio, P.; Lassi, U. Bioavailability of nutrients and harmful elements in ash fertilizers:Effect of granulation. Biomass Bioenergy 2017, 100, 92–97. [Google Scholar] [CrossRef]
Sample ID | Region of Supplier | Sampling Zone |
---|---|---|
SHA1-F | Northeastern Bulgaria | Filter |
SHA1-S | Central northern Bulgaria | Storage place |
SHA2-F | Central northern Bulgaria | Filter |
SHA2-S | Central northern Bulgaria | Storage place |
SHA3-S | Northern Bulgaria | Storage place |
SHA4-F | Northeastern Bulgaria | Filter |
SHA4-B | Northeastern Bulgaria | Bottom ash |
SHA4-S | Northeastern Bulgaria | Storage place |
SHA5-F | Southeastern Bulgaria | Filter |
SHA5-B | Southeastern Bulgaria | Bottom ash |
SHA6-S | Southern Bulgaria | Storage place |
SHA7-F | Central northern Bulgaria | Filter |
SHA7-S | Central northern Bulgaria | Storage place |
SHA8-S | Northeastern Bulgaria | Storage place |
SHA9-S | Northeastern Bulgaria | Storage place |
SHA10-S | Northeastern Bulgaria | Storage place |
SHA11-S | Central northern Bulgaria | Storage place |
SHA12-S | Northeastern Bulgaria | Storage place |
SHA13-S | Southern Romania 1 | Storage place |
SHA14-S | Southern Romania 2 | Storage place |
SHA15-S | Southern Romania 3 | Storage place |
SHA16-S | Southern Romania 4 | Storage place |
Sample | K2O wt. % | P2O5 wt. % | Fe2O3 wt. % | MgO wt. % | SO3 wt. % | CaO wt. % |
---|---|---|---|---|---|---|
SHA1-F | 40.9 | 4.5 | 0.0 | 7.3 | 7.2 | 14.8 |
SHA1-S | 30.7 | 4.0 | 0.3 | 9.3 | 7.4 | 22.5 |
SHA2-F | 17.9 | 9.2 | 0.6 | 15.3 | 4.1 | 29.0 |
SHA2-S | 24.6 | 6.6 | 0.3 | 13.8 | 7.1 | 22.7 |
SHA3-S | 22.5 | 10.5 | 0.2 | 14.9 | 3.8 | 24.4 |
SHA4-F | 39.4 | 1.5 | 0.0 | 14.1 | 3.7 | 17.8 |
SHA4-B | 12.0 | 7.4 | 1.9 | 15.1 | 3.7 | 33.8 |
SHA4-S | 30.8 | 3.8 | 0.3 | 9.3 | 7.4 | 22.5 |
SHA5-F | 40.0 | 1.4 | 0.1 | 11.2 | 6.5 | 16.9 |
SHA5-B | 23.2 | 6.3 | 0.3 | 13.9 | 3.6 | 24.5 |
SHA6-S | 18.9 | 6.5 | 0.9 | 15.5 | 4.0 | 25.7 |
SHA7-F | 32.7 | 7.8 | 0.3 | 12.3 | 4.4 | 19.9 |
SHA7-S | 32.5 | 5.2 | 0.4 | 12.5 | 4.5 | 21.1 |
SHA8-S | 22.9 | 6.3 | 0.4 | 14.7 | 3.1 | 29.0 |
SHA9-S | 20.3 | 9.5 | 0.4 | 16.1 | 7.2 | 18.3 |
SHA10-S | 22.8 | 3.9 | 0.4 | 16.0 | 6.9 | 22.4 |
SHA11-S | 23.5 | 6.9 | 0.6 | 15.4 | 3.4 | 28.9 |
SHA12-S | 20.3 | 9.0 | 0.5 | 14.8 | 4.1 | 27.9 |
SHA13-S | 33.0 | 5.9 | 0.4 | 11.7 | 4.3 | 21.7 |
SHA14-S | 30.9 | 6.3 | 0.3 | 11.7 | 6.1 | 22.3 |
SHA15-S | 44.0 | 3.8 | 0.0 | 7.3 | 15.8 | 11.7 |
SHA16-S | 26.9 | 8.9 | 0.3 | 13.7 | 5.7 | 24.1 |
Parameter | Regime 1 | Regime 2 | Regime 3 |
---|---|---|---|
Win wt. % | 5–8 | 9–12 | 13–15 |
Gtw L/min | 18 | 8 | 2 |
Experiment | SHA Sample | tin °C | τ min | Wgran wt. % | Crushing Test | K2O wt. % | P2O5 wt. % |
---|---|---|---|---|---|---|---|
Exp. 1 | SHA1-F | 80 | 20 | >5 | Passed | 23.3 | 4.3 |
Exp. 2 | SHA2-F | 100 | 20 | >5 | Passed | 18.9 | 5.6 |
Exp. 3 | SHA7-F | 100 | 20 | >5 | Passed | 27.0 | 6.9 |
Exp. 4 | SHA7-F | 100 | 40 | >5 | Passed | 22.3 | 5.1 |
Exp. 5 | SHA7-S | 180 | 20 | 5 | Passed | 28.7 | 5.4 |
Exp. 6 | SHA7-F | 220 | 20 | 5 | Passed | 29.8 | 5.0 |
Exp. 7 | SHA1-F | 320 | 20 | <3 | Failed | 26.5 | 5.2 |
Experiment | Samples in Mixture | Volumetric Ratio | K2O wt. % | P2O5 wt. % |
---|---|---|---|---|
Exp. 8 | SHA1-F and SHA7-F | 50/50 | 30.8 | 4.9 |
Exp. 9 | SHA1-S and SHA2-S | 50/50 | 29.5 | 5.8 |
Exp. 10 | SHA7-S and SHA2-S | 70/30 | 30.0 | 4.7 |
Exp. 11 | SHA4-F, SHA4-B, and SHA2-S | 0.26/0.24/0.5 | 31. 0 | 6.6 |
Exp. 12 | SHA4-F, SHA4-B, and SHA2-S | 0.36/0.34/0.3 | 33.6 | 4.8 |
Exp. 13 | SHA5-F, SHA5-B, and SHA2-S | 0.43/0.37/0.2 | 25.8 | 5.2 |
Chemical Element | Result mg/kg | Chemical Element | Result mg/kg |
---|---|---|---|
Boron | 620 ± 31 | Sulfur | 29,992 ± 1500 |
Vanadium | 2.2 ± 0.22 | Thallium | <0.050 |
Iron | 749 ± 37 | Phosphorus | 21,564 ± 1078 |
Potassium | 355,573 ± 17,779 | Chromium | 43.5 ± 2.2 |
Calcium | 137,394 ± 6870 | Zinc | 164 ± 8 |
Magnesium | 71,023 ± 3551 | Arsenic | <0.050 |
Manganese | 203 ± 10 | Cadmium | 1.37 ± 0.14 |
Copper | 263 ± 13 | Mercury | <0.050 |
Nickel | 23.5 ± 1.2 | Lead | 1.20 ± 0.12 |
PAH Concentration, μg/kg | PAH Concentration, μg/kg | ||||
---|---|---|---|---|---|
ANA | Acenaphthene | <10.0 | CHR | Chrysene | <10.0 |
ANY | Acenaphthylene | <10.0 | DBA | Dibenzo(a,h)anthracene | 41.5 ± 8.3 |
ANT | Anthracene | <10.0 | FA | Fluoranthene | <10.0 |
BaA | Benzo(a)anthracene | <10.0 | FLU | Fluorene | <10.0 |
BaP | Benzo(a)pyrene | <10.0 | IPY | Indeno(1,2,3-cd)pyrene | <10.0 |
BbF | Benzo(b)fluoranthene | <10.0 | NAP | Naphthalene | 15.7 ± 3.1 |
BPE | Benzo(g,h,i)perylene | <10.0 | PHE | Phenanthrene | <10.0 |
BkF | Benzo(k)fluoranthene | <10.0 | PYR | Pyrene | <10.0 |
Non-Dioxin-like PCBs μg/kg | Mono-Ortho PCBs ng/kg | Non-Ortho PCBs ng/kg | |||
---|---|---|---|---|---|
PCB 28 | <0.10 | PCB 123 | <0.66 | PCB 81 | <0.73 |
PCB 52 | <0.10 | PCB 118 | 15.95 ± 3.99 | PCB 77 | <0.72 |
PCB 101 | <0.10 | PCB 114 | <0.65 | PCB 126 | <0.98 |
PCB 138 | <0.10 | PCB 105 | 5.51 ± 1.38 | PCB 169 | <1.39 |
PCB 153 | <0.10 | PCB 167 | 7.02 ± 1.76 | ||
PCB 180 | <0.10 | PCB 156 | 3.98 ± 1.0 | ||
PCB 157 | <0.96 | ||||
PCB 189 | <1.08 |
Polychlorinated Dibenzo-p-Dioxin ng/kg | |||
---|---|---|---|
2.3.7.8-TCDF | <0.100 | 1.2.3.4.7.8-HxCDD | <0.149 |
2.3.7.8-TCDD | <0.061 | 1.2.3.6.7.8-HxCDD | <0.125 |
1.2.3.7.8-PeCDF | <0.073 | 1.2.3.7.8.9-HxCDD | <0.131 |
2.3.4.7.8-PeCDF | <0.070 | 1.2.3.4.6.7.8-HpCDF | <0.061 |
1.2.3.7.8-PeCDD | <0.148 | 1.2.3.4.7.8.9-HpCDF | <0.092 |
1.2.3.4.7.8-HxCDF | <0.133 | 1.2.3.4.6.7.8-HpCDD | <0.087 |
1.2.3.6.7.8-HxCDF | <0.137 | OCDF | <0.590 |
2.3.4.6.7.8-HxCDF | <0.142 | OCDD | <0.167 |
1.2.3.7.8.9-HxCDF | <0.232 | 1.2.3.4.7.8-HxCDD | <0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgureva-Filipova, D.; Nikolova, V.; Krasteva, L.; Filipov, K. Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility. Appl. Sci. 2025, 15, 2203. https://doi.org/10.3390/app15042203
Zgureva-Filipova D, Nikolova V, Krasteva L, Filipov K. Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility. Applied Sciences. 2025; 15(4):2203. https://doi.org/10.3390/app15042203
Chicago/Turabian StyleZgureva-Filipova, Denitza, Viktoria Nikolova, Lyudmila Krasteva, and Kalin Filipov. 2025. "Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility" Applied Sciences 15, no. 4: 2203. https://doi.org/10.3390/app15042203
APA StyleZgureva-Filipova, D., Nikolova, V., Krasteva, L., & Filipov, K. (2025). Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility. Applied Sciences, 15(4), 2203. https://doi.org/10.3390/app15042203