Protection Circuit Design for Ultrasound Transducers
Abstract
1. Introduction
2. Fundamental Concepts and Parameters of the Protection Circuits
3. Design Topology and Analysis of the Developed Protection Circuits
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
AC | Alternating current |
ADC | Analog-to-digital converter |
CMOS | Complementary MOS |
CMUT | Capacitive micromachined ultrasonic transducer |
DAC | Digital-to-analog converter |
DC | Direct current |
DMOS | Double-diffused MOS |
ESD | Electro-static discharge |
HD2 | Second harmonic distortion |
HD3 | Third harmonic distortion |
IL | Insertion loss |
IVUS | Intravascular ultrasound |
MOS | Metal-oxide-semiconductor |
MOSFET | Metal-oxide-semiconductor field-effect transistor |
NF | Noise figure |
NMOS | N-channel MOS |
PMOS | P-channel MOS |
PMUT | Piezoelectric micromachined ultrasonic transducer |
PVDF | Polyvinylidene |
RTZ | Return-to-zero |
SNR | Signal-to-noise ratio |
THD | Total harmonic distortion |
References
- Fenster, A. 3D Ultrasound Devices, Applications, and Algorithms; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mattoon, J.S.; Sellon, R.K.; Berry, C.R. Small Animal Diagnostic Ultrasound; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [Google Scholar]
- He, Z.; Zheng, F.; Ma, Y.; Kim, H.H.; Zhou, Q.; Shung, K.K. A sidelobe suppressing near-field beamforming approach for ultrasound array imaging. J. Acoust. Soc. Am. 2015, 137, 2785–2790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lau, S.; Wu, D.; Shung, K.K. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 2010, 56, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Wang, C.; Li, Y.; Zhou, J.; Yang, G.; Xiao, Y.; Feng, G.; Jin, Q.; Mu, P.; Qian, M.; et al. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography. Ultrasonics 2015, 62, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yuan, J.; Li, J.; Li, W.; Qin, Y.; Ge, X.; Ou-Yang, J.; Yang, X.; Zhu, B. Design and prediction of laser-induced damage threshold of CNT–PDMS optoacoustic transducer. Ultrasonics 2024, 142, 107377. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhang, Q.; Lv, S.; Zhang, J.; Wang, X.; Shi, D.; Gong, X.; Lam, K. Miniature intravascular photoacoustic endoscopy with coaxial excitation and detection. J. Biophotonics 2023, 16, e202200269. [Google Scholar] [CrossRef] [PubMed]
- Kripfgans, O.D.; Chan, H.-L. Ultrasonic Imaging: Physics and Mechanism; Springer International Publishing: Berlin, Germany, 2021. [Google Scholar]
- Qiu, W.; Yu, Y.; Chabok, H.R.; Liu, C.; Tsang, F.K.; Zhou, Q.; Shung, K.K.; Zheng, H.; Sun, L.A. Flexible Annular-Array Imaging Platform for Micro-Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 178–186. [Google Scholar] [PubMed]
- Nakamura, K. Ultrasonic Transducers: Materials and Design for Sensors, Actuators and Medical Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Weibao, Q.; Yanyan, Y.; Keung, T.F.; Lei, S. A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1558–1567. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhang, X.; Zhang, G. Acoustic radiation force on a fluid cylindrical particle immersed in water near an impedance boundary. J. Acoust. Soc. Am. 2017, 141, 4633–4641. [Google Scholar] [CrossRef]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef]
- Shung, K.K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Choi, H. Power Amplifier Design for Ultrasound Applications. Micromachines 2023, 14, 1342. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.; Choi, J.H.; Choo, H.T.; Kim, G.U.; Ryu, J.; Choi, H. Fully Customized Photoacoustic System Using Doubly Q-Switched Nd:YAG Laser and Multiple Axes Stages for Laboratory Applications. Sensors 2022, 22, 2621. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Shung, K.K. Novel power MOSFET-based expander for high frequency ultrasound systems. Ultrasonics 2014, 54, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Bugg, D.V. Electronics: Circuits, Amplifiers and Gates; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Kim, K.; Choi, H. High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems. PLoS ONE 2021, 16, e0249034. [Google Scholar] [CrossRef] [PubMed]
- Choi, H. Harmonic-Reduced Bias Circuit for Ultrasound Transducers. Sensors 2023, 23, 4438. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw-Hill Science: New York, NJ, USA, 2016. [Google Scholar]
- Kim, K.; Choi, H. A New Approach to Power Efficiency Improvement of Ultrasonic Transmitters via a Dynamic Bias Technique. Sensors 2021, 21, 2795. [Google Scholar] [CrossRef] [PubMed]
- Ozenbaugh, R.L.; Pullen, T.M. EMI Filter Design; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Irwin, J.D.; Nelms, R.M. Basic Engineering Circuit Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Choi, H. An Inverse Class-E Power Amplifier for Ultrasound Transducer. Sensors 2023, 23, 3466. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-K. The Circuits and Filters Handbook; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Pedroni, V.A. Circuit Design with VHDL; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Choi, H.; Yoon, C.; Yeom, J.-Y. A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Appl. Sci. 2017, 7, 354. [Google Scholar] [CrossRef]
- Choi, H. Design of Preamplifier for Ultrasound Transducers. Sensors 2024, 24, 786. [Google Scholar] [CrossRef]
- Lockwood, G.; Hunt, J.; Foster, F. The design of protection circuitry for high-frequency ultrasound imaging systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 48–55. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Electromagnetics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bera, S.C. Microwave High Power High Efficiency GaN Amplifiers for Communication; Springer Nature: Dordrecht, The Netherlands, 2022. [Google Scholar]
- Postema, M. Fundamentals of Medical Ultrasound; Taylor and Francis: New York, NJ, USA, 2011. [Google Scholar]
- Oppelt, R.; Vester, M. Duplexer Including a Variable Capacitance Diode for an Ultrasound Imaging System. U.S. Patent 5,609,154, 11 March 1997. [Google Scholar]
- Oppelt, R.; Petersen, D.A. Ultrasound Front-End Circuit Combining the Transmitter and Automatic Transmit/Receiver Switch. U.S. Patent 6,083,164, 4 July 2000. [Google Scholar]
- Rahmani-Andebili, M. Advanced Electrical Circuit Analysis; Springer Nature: Dordrecht, The Netherlands, 2022. [Google Scholar]
- Sevic, J.F. The Load-Pull Method of RF and Microwave Power Amplifier Design; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Poulsen, J. Low loss wideband protection circuit for high frequency ultrasound. In Proceedings of the IEEE Ultrasonics Symposium, Tahoe, NV, USA, 17–20 October 1999; Volime 1, pp. 823–826. [Google Scholar]
- Vogt, M.; Paul, B.; Scharenberg, S.; Scharenberg, R.; Ermert, H. Development of a high frequency ultrasound skin imaging system: Optimization utilizing time domain reflectometry and network analysis. In Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 5–8 October 2003; Volume 1, pp. 744–747. [Google Scholar]
- Suetens, P. Fundamentals of Medical Imaging; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Wang, L.V.; Wu, H.-I.; Masters, B.R. Biomedical Optics, Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Moore, T.C.; Suorsa, V.; Masters, D. Preamplifier and Protection Circuit for an Ultrasound Catheter. USA Patent 6,511,432 B2, 28 January 2003. [Google Scholar]
- Fuller, M.I.; Blalock, T.N.; Hossack, J.A.; Walker, W.F. Novel transmit protection scheme for ultrasound systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 54, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Fritsch, C. Protection circuits for ultrasound applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Chatain, P.; Voisin, D.; Legros, M.; Ferin, G.; Dufait, R. Improving ultrasound imaging with integrated electronics. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 2718–2721. [Google Scholar]
- Zhao, D.; Tan, M.T.; Cha, H.-K.; Qu, J.; Mei, Y.; Yu, H.; Basu, A.; Je, M. High-voltage pulser for ultrasound medical imaging applications. In Proceedings of the 2011 International Symposium on Integrated Circuits (ISIC), Singapore, 12–14 December 2011; pp. 408–411. [Google Scholar]
- Zhou, S.Y.; Zhang, K.; Xiao, D.; Xu, C.G.; Yang, B. Application of Silicon Carbide Diode in Ultrasound High Voltage Pulse Protection Circuit. Appl. Mech. Mater. 2013, 290, 115–119. [Google Scholar] [CrossRef]
- MD0100. Available online: https://www.microchip.com/en-us/product/md0100 (accessed on 13 February 2025).
- Choi, H.; Yang, H.-C.; Shung, K.K. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems. Ultrasonics 2013, 54, 754–758. [Google Scholar] [CrossRef]
- Choi, H.; Shung, K.K. Protection Circuits for Very High Frequency Ultrasound Systems. J. Med. Syst. 2014, 38, 34. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C. Design of a power-less integrated protection circuit for biomedical ultrasound transmit/receive. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Taipei, Taiwan, 6–8 June 2015; pp. 184–185. [Google Scholar]
- Kajiyama, S.; Igarashi, Y.; Yazaki, T.; Katsube, Y.; Nishimoto, T.; Nakagawa, T.; Nakamura, Y.; Hayashi, Y.; Kaneko, T.; Ishikuro, H.; et al. T/R Switch Composed of Three HV-MOSFETs With 12.1-μW Consumption That Enables Per-Channel Self-Loopback AC Tests and −18.1-dB Switching Noise Suppression for 3-D Ultrasound Imaging With 3072-Ch Transceiver. IEEE Trans. Very Large Scale Integr. Syst. 2021, 30, 153–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, D.; Demosthenous, A. A Differential SPDT T/R Switch for PMUT Biomedical Ultrasound Systems. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024; pp. 1–4. [Google Scholar]
- Choi, H. Novel dual-resistor-diode limiter circuit structures for high-voltage reliable ultrasound receiver systems. Technol. Health Care 2022, 30, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Ehsanipour, R.; Shoaei, O. A compact bipolar high-voltage pulser with a novel transistor gate–source protection scheme for ultrasound imaging applications. Int. J. Circuit Theory Appl. 2023, 52, 2097–2109. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, H.; Wang, Z.; Qiu, C.; Peng, Y.B.; Zhu, X.; Li, J.; Ge, X.; Xu, J.; Huang, X.; et al. Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 2022, 8, eabk0159. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Zhang, T.; Shung, K.K.; Zhu, B. Recent Advancements in Ultrasound Transducer: From Material Strategies to Biomedical Applications. BME Front. 2022, 2022, 9764501. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Hao, J.; Zhang, J.; Jiang, L.; Youn, S.; Lu, G.; Yan, D.; Kang, H.; Sun, Y.; Shung, K.K.; et al. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Wang, X.; Chen, Y.; Fu, Q.; Su, M.; Zhang, L.; Xia, J.; Dai, J.; Zhang, Y.; Zheng, H. Modulated Excitation Imaging System for Intravascular Ultrasound. IEEE Trans. Biomed. Eng. 2016, 64, 1935–1942. [Google Scholar] [CrossRef]
- You, K.; Kim, S.-H.; Choi, H. A Class-J Power Amplifier Implementation for Ultrasound Device Applications. Sensors 2020, 20, 2273. [Google Scholar] [CrossRef]
- Safari, A.; Akdogan, E.K. Piezoelectric and Acoustic Materials for Transducer Applications; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Zhou, Y.; Zhang, S.X.; Li, G.P. Piezoelectric Nuclear Battery Driven by the Jet-Flow. In Proceedings of the 2017 25th International Conference on Nuclear Engineering, Shanghai, China, 2–6 July 2017. [Google Scholar]
- Kazimierczuk, M.K. RF Power Amplifier; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gurevich, V. Protection Devices and Systems for High-Voltage Applications—Book Review; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Su, M.; Zhang, Z.; Hong, J.; Huang, Y.; Mu, P.; Yu, Y.; Liu, R.; Liang, S.; Zheng, H.; Qiu, W. Cable-Shared Dual-Frequency Catheter for Intravascular Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Middleman, S.; Hochberg, A.K. Process Engineering Analysis in Semiconductor Device Fabrication; Mcgraw-Hill Education: New York, NJ, USA, 1993. [Google Scholar]
Paper | Type | Performance Parameter | Characteristics | Application |
---|---|---|---|---|
[30] | Transmission line with diode | Advantageous to be matched with the transmitter and receiver when using a certain length of the transmission line. | PVDF ultrasound transducer | |
[34] | Duplexer design with variable capacitive diode | Reduction in the IL and noise | Ultrasound imaging system | |
[35] | Transformer with diode | Unwanted DC source blocking. | Ultrasound imaging system | |
[38] | Wideband transformer-based limiter | IL is −4 to −8 dB at 20 MHz and −55 to −66 dB at 45 MHz. | Wideband transformers can improve IL at high-frequency operation. | Ultrasound imaging system |
[39] | Bridge diode | Using a transmission line improves impedance matching. | High-frequency ultrasound skin imaging | |
[42] | Dual bridge diode | Advantageous for impedance matching and the input and output receiver. | Ultrasound catheter | |
[43] | Metal-oxide-semiconductor field-effect transistor (MOSFET) shunt device | IL is −19.17 dB | Chip area reduction using low-voltage switch circuit for high-channel system | Portable high-channel ultrasound imaging system |
[44] | Gate-source connected MOSFET device | IL, total harmonic distortion (THD), bandwidth, input-referred noise, recovering time, and power consumption are −5 dB, −93 dB, 60 MHz, 2.5 nV/√Hz, 0.2 μS, and 26 mW, respectively. | Improvement of IL, noise, and DC power consumption. | Ultrasound pulse-echo system |
[45] | Dual gate-source connected MOSFET device | Bandwidth, input-referred noise, and recovering time are 41 MHz, 2 nV/√Hz, and <1 μS, respectively. | Signal-to-noise ratio improvement in deeper depth | Ultrasound imaging system |
[46] | N-channel MOSFET switch | Useful for unipolar pulse transmission and chip area reduction | Capacitive micromachined ultrasonic transducer | |
[47] | Bridge diode based on SiC diode | Bandwidth and recovering time are 27 MHz and 25 ns. | Useful for very-high-voltage above 400 V transmission | Very-high-voltage ultrasound system |
[49] | Bipolar-transistor | IL, THD, bandwidth, input-referred noise, and recovering time are 6.3 dB, −77.3 dB, 135 MHz, 96 dB, and 43 ns, respectively. | Useful to lower IL and THD for high-frequency operation | High-frequency ultrasound transducer |
[50] | Gate-drain connected MOSFET device | IL and THD are −1.0 dB and −69.89 dB at 120 MHz, respectively. | Useful for improving IL for very high-frequency transducer | High-frequency ultrasound imaging system |
[51] | Complementary and gate-source connected MOSFET device | IL and bandwidth are −0.5 dB and 100 MHz, respectively. | Useful for impedance matching without external DC bias | Very high-frequency ultrasound transducer |
[52] | Gate-source connected MOSFET switch | Static power consumption is 12.1 μW. | Useful for lowering static power consumption | Ultrasound imaging system |
[54] | Diode limiter | IL, THD, and recovering time are −3.87 dB, 0.29%, and 6.1 μS. | Improved sensitivity with conventional diode limiter design | Multi-channel ultrasound transducer |
[55] | RTZ circuit and switch | The recovery time is 77.23 ns. | Chip area reduction using a low-voltage switch circuit | Ultrasound imaging system |
Type | Contribution | Limitation |
---|---|---|
Protection circuits based on a limiter diode | Useful for array imaging systems due to simple architecture | High IL at high frequency |
Protection circuits based on a bridge diode | Low IL at high frequency | Required to control fast turn-on and off time |
Protection circuits based on a MOSFET | Low IL and low noise at high frequency | To reduce space, the chip process needs to be used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H. Protection Circuit Design for Ultrasound Transducers. Appl. Sci. 2025, 15, 2141. https://doi.org/10.3390/app15042141
Choi H. Protection Circuit Design for Ultrasound Transducers. Applied Sciences. 2025; 15(4):2141. https://doi.org/10.3390/app15042141
Chicago/Turabian StyleChoi, Hojong. 2025. "Protection Circuit Design for Ultrasound Transducers" Applied Sciences 15, no. 4: 2141. https://doi.org/10.3390/app15042141
APA StyleChoi, H. (2025). Protection Circuit Design for Ultrasound Transducers. Applied Sciences, 15(4), 2141. https://doi.org/10.3390/app15042141