Decision Making Support Framework for Aquaculture Using Multi Source Data Hub
Abstract
1. Introduction
2. Related Works
2.1. Aquaculture Decision-Making Support Frameworks
2.2. Aquaculture Data Hub Ecosystem
3. Research Design and Experiment Setup
3.1. Aquaculture Decision-Making Support Framework Design
3.2. Data Collection
3.3. Decision-Making Support Use Cases
3.4. Research Environment
4. Implementation Results and Discussion
4.1. Smart Shrimp Farm Assistant
4.1.1. Farm Assistant Dataset
4.1.2. Farm Monitoring Assistant Implementation
4.2. Shrimp Farm Equipment Data Sharing
4.2.1. Farm Equipment Dataset
4.2.2. Farm Equipment Data Sharing Implementation
4.3. Farm Cost and Profit Calculator
4.4. Aquaculture Market Analysis
4.5. Evaluation Performance Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, N.-B.; Woo, H.; Lee, D.; Huh, J.-H. AgTech: A Survey on Digital Twins Based Aquaculture Systems. IEEE Access 2024, 12, 125751–125767. [Google Scholar] [CrossRef]
- Lim, L.W.K. Implementation of artificial intelligence in aquaculture and fisheries: Deep learning, machine vision, big data, internet of things, robots and beyond. J. Comput. Cogn. Eng. 2024, 3, 112–118. [Google Scholar] [CrossRef]
- Prapti, D.R.; Shariff, A.R.M.; Man, H.C.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-based aquaculture: An overview of IoT application on water quality moni-toring. Rev. Aquac. 2022, 14, 979–992. [Google Scholar] [CrossRef]
- Khodashahri, N.G.; Sarabi, M.M.H. Decision support system (DSS). Singaporean J. Bus. Econ. Manag. 2013, 1, 95–102. [Google Scholar] [CrossRef][Green Version]
- Mathisen, B.M.; Haro, P.; Hanssen, B.; Björk, S.; Walderhaug, S. Decision support systems in fisheries and aquaculture: A systematic review. arXiv 2016, arXiv:1611.08374. [Google Scholar] [CrossRef]
- Mandal, A.; Ghosh, A.R. Role of artificial intelligence (AI) in fish growth and health status monitoring: A review on sustainable aquaculture. Aquac. Int. 2024, 32, 2791–2820. [Google Scholar] [CrossRef]
- Kuncha, P.; Manoranjini, J.; Sirisha, J.; Bandeela, S.; Penjarla, N.K.; Goud, S.S. Advanced Aquaculture Management: A Smart System for Optimizing Oxygen Levels, Shrimp Health Monitoring. In Smart Factories for Industry 5.0 Transformation; Nidhya, R., Kumar, M., Karthik, S., Anand, R., Balamurugan, S., Eds.; Wiley-Scrivener Publishing: Beverly, NJ, USA, 2025; pp. 283–298. [Google Scholar]
- Flores-Iwasaki, M.; Guadalupe, G.A.; Pachas-Caycho, M.; Chapa-Gonza, S.; Mori-Zabarburú, R.C.; Guerrero-Abad, J.C. Internet of Things (IoT) Sensors for Water Quality Monitoring in Aqua-culture Systems. Agriengineering 2025, 7, 78. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Khabusi, S.P. Artificial intelligence of things (AIoT) advances in aquaculture: A review. Processes 2025, 13, 73. [Google Scholar] [CrossRef]
- Elmessery, W.M.; Abdallah, S.E.; Oraiath, A.A.T.; Espinosa, V.; Abuhussein, M.F.A.; Szűcs, P.; Eid, M.H.; El-Shinawy, D.M.; Aljumayi, H.; Mahmoud, S.F.; et al. A deep deterministic policy gradient approach for optimizing feeding rates and water quality management in recirculating aquaculture systems. Aquac. Int. 2025, 33, 253. [Google Scholar] [CrossRef]
- Hu, J.; Yin, J.; Yang, C.; Zhou, Y.; Li, C. Intelligent forecasting model for aquatic production based on artificial neural network. Front. Mar. Sci. 2025, 12, 1556294. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, M.; Lu, Z.; Ma, L. Prediction and Analysis of Sturgeon Aquaculture Production in Guizhou Province Based on Grey System Model. Sustainability 2025, 17, 3292. [Google Scholar] [CrossRef]
- Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D’ANtonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; et al. A Web-based spatial decision supporting system for land management and soil conservation. Solid Earth 2015, 6, 903–928. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Halide, H.; Stigebrandt, A.; Rehbein, M.; McKinnon, A. Developing a decision support system for sustainable cage aquaculture. Environ. Model. Softw. 2009, 24, 694–702. [Google Scholar] [CrossRef]
- Shahriar, S.; McCulluch, J. A dynamic data-driven decision support for aquaculture farm closure. Procedia Comput. Sci. 2014, 29, 1236–1245. [Google Scholar] [CrossRef]
- Su, J.; Chen, J.; Wen, J.; Xie, W.; Lin, M. Analysis decision-making system for aquaculture water quality based on deep learning. J. Phys. Conf. Ser. 2020, 1544, 12028. [Google Scholar] [CrossRef]
- Mathisen, B.M.; Bach, K.; Aamodt, A. Using extended siamese networks to provide decision support in aquaculture operations. Appl. Intell. 2021, 51, 8107–8118. [Google Scholar] [CrossRef]
- Gangnery, A.; Bacher, C.; Boyd, A.; Liu, H.; You, J.; Strand, Ø. Web-based public decision support tool for integrated planning and management in aquaculture. Ocean Coast. Manag. 2021, 203, 105447. [Google Scholar] [CrossRef]
- Howarth, L.; Knight, B.; Symonds, J.; Waddington, Z.; Davidson, I. A decision support system to predict mortality events in finfish aquaculture. Aquac. Environ. Interactions 2025, 17, 33–43. [Google Scholar] [CrossRef]
- Seref, S.; Sinanc, D. Big data: A review. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar]
- Bansal, M.; Chana, I.; Clarke, S. A survey on IoT Big Data: Current status, 13 v’s challenges, and future directions. ACM Comput. Surv. 2020, 53, 131. [Google Scholar] [CrossRef]
- O’Leary, D.E. Artificial intelligence and big data. IEEE Intell. Syst. 2013, 28, 96–99. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- RLippmann, R. An introduction to computing with neural nets. IEEE Assp. Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Agrawal, D.; Das, S.; El Abbadi, A. Big data and cloud computing: Current state and future opportunities. In Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, Sweden, 21–24 March 2011; pp. 530–533. [Google Scholar]
- Hashem, I.; Targio, A.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “Big Data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- Oussous, A.; Benjelloun, F.-Z.; Lahcen, A.A.; Belfkih, S. Big Data technologies: A survey. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 431–448. [Google Scholar] [CrossRef]
- Bandri, V. Enterprise Data Security Measures: A Comparative Review of Effectiveness and Risks Across Different Industries and Organization Types. Int. J. Bus. Intell. Big Data Anal. 2023, 6, 1–11. [Google Scholar]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Gadepally, V.; Kepner, J. Technical Report: Developing a Working Data Hub. arXiv 2020, arXiv:2004.00190. [Google Scholar] [CrossRef]
- Serrano, O.; Dandurand, L.; Brown, S. On the design of a cyber security data sharing system. In Proceedings of the 2014 ACM Workshop on Information Sharing & Collaborative Security, Scottsdale, AZ, USA, 3 November 2014; pp. 61–69. [Google Scholar]
- Allan, G.L.; O’Connor, W.; Fielder, D.S.; Booth, M.; Heasman, H. Aquaculture Innovation Hub. Final Report Project, 2008; Volume 902. Available online: https://www.frdc.com.au/sites/default/files/products/2008-902-DLD.pdf (accessed on 9 December 2025).
- Raymond, K.; Stacey, D.; Bernardo, T. Aquaculture Data Management and Governance Strategy. 2021. Available online: https://gbads-documentation.s3.ca-central-1.amazonaws.com/20210418_AquacultureGBADsInformatics.pdf (accessed on 9 December 2025).
- Sami, J.; Bumbak, M.; Camargo, U.; Rautiainen, T.; Ryhänen, M.; Šermukšnytė-Alešiūnienė, K. Aquahubs-Project: Supporting Aquaculture Innovation Experiments. Case Automatic Estimation of Fish Stock; South-Eastern Finland University of Applied Science, XAMK Development; 2022; Volume 197, pp. 1–45. Available online: https://www.theseus.fi/bitstream/handle/10024/755913/URNISBN9789523444416.pdf?sequence=2 (accessed on 9 December 2025).
- Sivkov, Y.A. Building maritime data hub by using the Arduino IoT platform. In Global Perspectives in MET: Towards Sustainable, Green and Integrated Maritime Transport; 2017; pp. 533–540. Available online: https://www.researchgate.net/profile/Charlott-Sellberg/publication/320335664_Training_skills_and_assessing_performance_in_simulator-based_learning_environments/links/59df30daa6fdccfcfda315c8/Training-skills-and-assessing-performance-in-simulator-based-learning-environments.pdf#page=533 (accessed on 9 December 2025).
- Jevrejeva, S.; Matthews, A.; Williams, J. Development of a Coastal Data Hub for Stakeholder Access in the Caribbean Region. 2019. Available online: https://nora.nerc.ac.uk/id/eprint/523770/ (accessed on 9 December 2025).
- Contarinis, S.; Kastrisios, C. Marine spatial data infrastructure. In The Geographic Information Science & Technology Body of Knowledge, 1st ed.; 2022; Available online: https://gistbok-topics.ucgis.org/DM-07-091 (accessed on 9 December 2025).
- Giuffrida, R.; de Majo, C.; Giuffrida, M.; Broadbent, I.D. FAIR data management practices to introduce cir-cular economy in aquaculture: Benefits, barriers and a preliminary roadmap. Int. J. Data Sci. Anal. 2025, 20, 4995–5015. [Google Scholar] [CrossRef]
- Sevin, S.; Dikel, S. Building a Collaborative Aquaculture Research Ecosystem with APIs and AI. Aquat. Sci. Eng. 2025, 40, 42–52. [Google Scholar] [CrossRef]
- Nahid, A.-A.; Arafat, A.I.; Akter, T.; Ahammed, F.; Ali, Y. KU-MWQ: A dataset for monitoring water quality using digital sensors. Mendeley Data 2020, 4. [Google Scholar] [CrossRef]
- Oceans and Fisheries Home Page. Available online: https://oceans-and-fisheries.ec.europa.eu/fisheries_en (accessed on 17 May 2025).
- Food and Agriculture Organization. Available online: https://www.fao.org/home/en/https://oceans-and-fisheries.ec.europa.eu/fisheries_en (accessed on 17 May 2025).
- World Fish Center. Available online: https://worldfishcenter.org/ (accessed on 17 May 2025).
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Evaluation of Shrimp Farming Technology and Recommendations on Solutions for the Sustainable Development of Shrimp Industry. Mekong Delta Climate Resilience Programme (MCRP). 2020. Available online: https://mcrp.mard.gov.vn/FileUpload/2021-09/cW7NBvRC1UWmdCVe200821%20Aquaculture%20technology%20EN.pdf (accessed on 9 December 2025).











| DSS Name | Decision Support Task | Technology | Data Source | Supporting Period |
|---|---|---|---|---|
| Cage Aquaculture Decision Support Tool (CADS_TOOL) Halide et al. (2009) [15] | Manage and develop cage fish farming in marine environments: - Site classification - Site selection - Stocking density - Economic evaluation | Analytical hierarchy process (AHP), Simplified Modeling-On growing-Monitoring (SMOM) Deploy in Java application | - Water and substrate qualities measurements - Hydrometeorology - Socioeconomic factors | Long-term |
| Data driven dynamic decision support system (DDDAS) Shahriar and McCulloch (2014) [16] | Predict and assist in closure management in shellfish farms | Machine learning (M5P, linear regression, support vector regression, linear regression) and expert rules to predict closure | Environmental time-series data (water temperature, river flow, rainfall, and salinity) | Ongoing |
| Water quality management DSS Su et al. (2020) [17] | Predict water quality factors, visualizes data, and provides early warning | Dep learning models (Xgboost, BP, long short-term memory), Spark framework | Water quality data (dissolved oxygen, water temperature, pH, and ammonia nitrogen) | Ongoing |
| Aquaculture Case-Based Reasoning (AQCBR) Mathisen et al. (2021) [18] | Predict the success of aquaculture operations based on prior cases of aquaculture operations | Extended Siamese Neural Networks (ESNN) | 700 field reports from the EXPOSED project covering aquaculture operation outcomes at three separate sites | Ongoing |
| Web-based public decision support tool Gangnery et al. (2021) [19] | Site selection, environmental interactions, and aquaculture management | AkvaVis tool: Geographic Information System (GIS), Web Mapping Service (WMS) | Multidimensional data covers a large range of topics: physical and biological properties of the ecosystem, governance and regulatory systems, socio-economic activities/usages, and cultural aspects of the study area. | Ongoing |
| Name | Platform Type | Features | Data Source | Interoperability Features | Security Mechanism |
|---|---|---|---|---|---|
| Aquaculture Innovation Hub Allan et al. (2008) [33] | Digital Innovation Hub (DIH) | Coordinate aquaculture research and improve interaction between various stakeholders. - Identify research priorities - Improve applied research - Facilitate training. | Integrate environmental and technological data from various research efforts and networks in the aquaculture sector. | Link data from different sources and domains, facilitate collaboration and data sharing among various stakeholders. | Not detailed explicitly |
| Aquaculture production chain metadata-based KE governance strategy Raymond et al. (2021) [34] | Knowledge Engine (KE) | Survey, collect, and classify multiple sources, creating a metadata catalog, using mapping techniques, and testing graph databases for retrieving linked and unified data on production, pathology, environment, and trade for aquaculture. Supports integrating new datasets | Aquaculture farming operation production systems and practices, key production countries, diseases of particular interest or concern, reportable diseases, methods of vaccination and treatment, feed, water quality and water temperature. | Distribute metadata from different sources, allowing access through an application programming interface (API). | Collective benefit, Authority to Control, Responsibility and Ethics (CARE) principles |
| AquaHubs Sami et al. (2022) [35] | DIH | Automated fish stock estimation system to promote cross border cooperation and facilitate technology transfer in the aquaculture industry. | - Sonar data - Underwater video imaging via aquatic drones - Global Positioning System (GPS) data - Metadata (depth, temperature, location, time) | - Integrate sonar, drone video and environmental metadata - Cloud-based architecture supports multi-user data sharing - Data exchange envisioned across multiple DIHs and end-users | Not detailed explicitly |
| Maritime data hub Sivkov (2017) [36] | Data Hub | Utilize Arduino microcontroller systems to develop an IoT framework for maritime data collection, processing, and transmission to the expert control system | Collects data from different types of sensors relevant to maritime operations | Enable real-time data collection and processing, supporting timely decision-making for maritime operations. Utilize low-cost microcontroller systems, capable of easily incorporating additional sensors. | Secure data transmission Customizable security |
| Processor | AMD® Ryzen 7 5800 × 8-core processor × 16 |
| Operating System | Ubuntu 20.04.5 LTS |
| RAM | 128.0 GB RAM |
| GPU | NVIDIA Corporation TU106 [GeForce RTX 3060 Ti] |
| GPU Accelerator | CUDA Version 12.5 |
| Programming Language | Python 3.10 |
| Libraries | TensorFlow and PyTorch 2.4.1 |
| Software | Microsoft’s Visual Studio 17.4, MongoDB 8.0, Expo SDK 5 |
| Model | Validation RMSPE | Validation RMSE |
|---|---|---|
| 1 Conv1D 2 Bidirect LSTM layers (32/16), n_past = 4, batch = 64 | 0.291624 | 0.073509 |
| Bootstrap TARCH(1,2,1), Constant Mean, Skewt Dist | 0.311185 | 0.058731 |
| Analytical GJR-GARCH(1,1,1), Constant Mean, Skewt Dist | 0.341383 | 0.081698 |
| LSTM 1 layer 20 units, n_past = 3 | 0.441610 | 0.059256 |
| Multivariate Bidirect LSTM 3 layers (64/32/16 units), n_past = 5 | 0.458288 | 0.105380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, N.-B.-V.; Liu, Y.; Thai, H.-D.; Ko, H.-J.; Huh, J.-H. Decision Making Support Framework for Aquaculture Using Multi Source Data Hub. Appl. Sci. 2025, 15, 13124. https://doi.org/10.3390/app152413124
Le N-B-V, Liu Y, Thai H-D, Ko H-J, Huh J-H. Decision Making Support Framework for Aquaculture Using Multi Source Data Hub. Applied Sciences. 2025; 15(24):13124. https://doi.org/10.3390/app152413124
Chicago/Turabian StyleLe, Ngoc-Bao-Van, YuanYuan Liu, Hong-Danh Thai, Han-Jong Ko, and Jun-Ho Huh. 2025. "Decision Making Support Framework for Aquaculture Using Multi Source Data Hub" Applied Sciences 15, no. 24: 13124. https://doi.org/10.3390/app152413124
APA StyleLe, N.-B.-V., Liu, Y., Thai, H.-D., Ko, H.-J., & Huh, J.-H. (2025). Decision Making Support Framework for Aquaculture Using Multi Source Data Hub. Applied Sciences, 15(24), 13124. https://doi.org/10.3390/app152413124

