Influence of Compaction and Water Content on the Shear Performance of Gobi Soil as a Sustainable Construction Material
Abstract
1. Introduction
2. Materials
3. Sample Preparation and Tests
3.1. Sample Preparation
3.2. Direct Shear Test
4. Results and Discussion
4.1. Shear Stress—Displacement Relationship
4.2. Peak Shear Stress Variations
4.2.1. Water Content Factor
4.2.2. Compaction Degree Factor
4.3. Shear Modulus Variations
4.4. Shear Strength Parameters Variations
4.4.1. Water Content Factor
4.4.2. Compaction Degree Factor
4.5. Mechanisms of Mechanical Parameter Change
4.6. Empirical Formulations of Mechanical Parameters
5. Conclusions
- (1)
- The shear stress–displacement relationship of Gobi soil is governed by water content, transitioning from strain-softening to strain-hardening as water content increases. The relative softening coefficient decreases with higher water content and vertical stress, but increases with greater compaction degree.
- (2)
- Mechanical parameters improve with increasing compaction degree and vertical stress, while water content exhibits an initial increase followed by a decrease in its influence. When compaction degree rises from 87% to 95%, the peak shear stress at optimal water content shows a maximum increase of 35%. The elastic shear modulus demonstrates particularly significant growth under conditions of low water content, high compaction degree, and high vertical stress.
- (3)
- Compaction degree and water content affect mechanical properties by altering particle contact states and water film effects: high compaction enhances particle interlocking and contact; appropriate water content optimizes water film bonding, while excessive water generates lubrication effects that reduce strength.
- (4)
- Gobi soil mechanical parameters can be accurately fitted using binary quadratic equations. For engineering applications: water content should be maintained between 4–8% with compaction degree not less than 90%, providing crucial parameter guidance for wind-solar power foundation design in Gobi regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olodu, D.D.; Ihenyen, O.I.; Inegbedion, F. Advances in renewable energy systems: Integrating solar, wind, and hydropower for a carbon-neutral future. Int. J. New Find. Eng. Sci. Technol. 2025, 3, 14–24. [Google Scholar] [CrossRef]
- Xie, L.; Majumder, S.; Huang, T.; Zhang, Q.; Chang, P.; Hill, D.J.; Shahidehpour, M. The role of electric grid research in addressing climate change. Nat. Clim. Change 2024, 14, 909–915. [Google Scholar] [CrossRef]
- Zhang, H.J. Key technologies and development challenges of high-proportion renewable energy power systems. Highlights Sci. Eng. Technol. 2023, 29, 137–142. [Google Scholar] [CrossRef]
- Enebish, N. Developing very large scale solar power plants in the Gobi desert to contribute for north east Asia’s energy transition. In Proceedings of the 2025 IEEE 53rd Photovoltaic Specialists Conference (PVSC), Montreal, QC, Canada, 8–13 June 2025; pp. 842–844. [Google Scholar] [CrossRef]
- Kamal, H.; Saudi, G.; Aal, A.A.A. Geological, geotechnical and geophysical aspects of zafarana wind farms sites and their expansion at Gabel El Zeit sites Egypt. IOP Conf. Ser. Mater. Sci. Eng. 2020, 974, 12005. [Google Scholar] [CrossRef]
- Kouakou, N.M.; Cuisinier, O.; Masrouri, F. Estimation of the shear strength of coarse-grained soils with fine particles. Transp. Geotech. 2020, 25, 100407. [Google Scholar] [CrossRef]
- Xue, Y.; Miao, F.S.; Wu, Y.P.; Dias, D.; Li, L.W. Combing soil spatial variation and weakening of the groundwater fluctuation zone for the probabilistic stability analysis of a riverside landslide in the Three Gorges Reservoir area. Landslides 2023, 20, 1013–1029. [Google Scholar] [CrossRef]
- Tatsuoka, F.; Hashimoto, T.; Tateyama, K. Soil stiffness as a function of dry density and the degree of saturation for compaction control. Soils Found. 2021, 61, 989–1002. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, Y.J.; Yang, Y.X.; Yang, B.; Huang, B.C.; Ji, X.P. Influence of coarse grain content on the mechanical properties of red sandstone soil. Sustainability 2023, 15, 3117. [Google Scholar] [CrossRef]
- Wei, J.; Shi, B.L.; Li, J.L.; Li, S.S.; He, X.B. Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the Three Gorges Reservoir Area, China. CATENA 2018, 166, 124–133. [Google Scholar] [CrossRef]
- Lu, L.; Wang, H.F.; Hu, D.W. Influence of moisture content and grain composition on shear strength of slightly dense gravel soil and bearing capacity of foundation. J. Chongqing Jianzhu Univ. 2017, 39, 138–144. [Google Scholar]
- Kong, Z.J.; Guo, Y.H.; Mao, S.L.; Zhang, W. Experimental study on shear strength parameters of round gravel soils in plateau alluvial-lacustrine deposits and its application. Sustainability 2023, 15, 3954. [Google Scholar] [CrossRef]
- Wang, H.D.; She, D.L.; Sun, X.Q.; Tang, S.Q.; Zheng, Y.P. Analysis of unsaturated shear strength and slope stability considering soil desalinization in a reclamation area in China. CATENA 2021, 196, 104949. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Luo, Y.; Yuan, S.Y.; Zhou, Y.R.; Zhou, Q.; Zeng, F.R.; Feng, W. Shear characteristics of gravel soil with different fillers. Front. Mater. 2022, 9, 962372. [Google Scholar] [CrossRef]
- Liu, Y.F.; Wen, T.; Mi, H.Z.; Ying, S.; Yang, P. Diseases and control methods of coarse-grained salty soil foundation of wind electricity engineering foundation in Hexi region. J. Lanzhou Jiaotong Univ. 2014, 33, 98–104. [Google Scholar]
- Liu, H.B.; Zhang, H.Z.; Wang, J. Test study on the compressive strength properties of compacted clayey soil. Key Eng. Mater. 2016, 703, 380–385. [Google Scholar] [CrossRef]
- Bao, H.F.; Wang, H.B.; Wang, L.; Wang, K.; Hu, P. The Study on the Characteristics of Compaction and the Standard of Compaction Control of Gravel Soil for Construction of the Changheba Hydropower Project. Yunnan Water Power 2014, 30, 11–18. [Google Scholar]
- Youwai, S.; Detcheewa, S. Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding. Eng. Appl. Artif. Intell. 2025, 139, 109664. [Google Scholar] [CrossRef]
- Shaivan, H.S.; Sridharan, A. Comparison of reduced modified proctor vs modified proctor. Geotech. Geol. Eng. 2020, 38, 6891–6897. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, Q.; Wang, H.; Wang, X.P.; Zhan, Y.Y.; Lin, J.S.; Zhang, Y.; Huang, Y.H.; Jiang, F.S. Effect of soil moisture content on the shear strength of dicranopteris linearis-rooted soil in different soil layers of collapsing wall. Forests 2024, 15, 460. [Google Scholar] [CrossRef]
- Zhang, H.R.; Li, F.H.; Lü, W. Effects of freeze-thaw status and initial water content on soil mechanical properties. Trans. Chin. Soc. Agric. Eng. 2017, 33, 128–133. [Google Scholar]
- Aventian, G.D.; Satyanaga, A.; Sagu, A.; Serikbek, B.; Pernebekova, G.; Aubakirova, B.; Zhai, Q.; Kim, J. Analytical and Finite-Element-Method-Based Analyses of Pile Shaft Capacity Subjected to Rainfall Infiltration. Sustainability 2023, 16, 313. [Google Scholar] [CrossRef]
- Wu, Y.D.; Wang, W.C.; Liu, J.; Ji, K. Test research on compaction effect of expressway embankment with sand-gravel-cobble mixture. Rock Soil Mech. 2012, 1, 211–216. [Google Scholar]
- Chang, W.-J.; Phantachang, T. Effects of gravel content on shear resistance of gravelly soils. Eng. Geol. 2016, 207, 78–90. [Google Scholar] [CrossRef]
- Allahyari, N.; Maleki, M. Investigation into small-strain shear modulus of sand–gravel mixtures in different moisture conditions and its correlation with static stiffness modulus. Int. J. Geotech. Eng. 2022, 16, 962–973. [Google Scholar] [CrossRef]
- Qin, M.Y.; Cui, P.; Jiang, Y.; Guo, J.; Zhang, G.T.; Ramzan, M. Occurrence of shallow landslides triggered by increased hydraulic conductivity due to tree roots. Landslides 2022, 19, 2593–2604. [Google Scholar] [CrossRef]
- Zhang, S.S.; Liu, W.; Chen, W.Z. Collapse test studies on coarse grain sulfite saline soil as an embankment fill material. Arab. J. Geosci. 2020, 13, 1265. [Google Scholar] [CrossRef]
- Ye, Y.S.; Cai, D.G.; Yao, J.K.; Wei, S.W.; Yan, H.Y.; Chen, F. Review on dynamic modulus of coarse-grained soil filling for high-speed railway subgrade. Transp. Geotech. 2021, 27, 100421. [Google Scholar] [CrossRef]
- Jiang, H.; Zou, Q.; Li, Y.; Jiang, Y.; Cui, J.F.; Zhou, B.; Zhou, W.T.; Chen, S.Y.; Zeng, Z.H. Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution. Environ. Modell. Softw. 2025, 183, 18. [Google Scholar] [CrossRef]
- Krim, A.; Brahimi, A.; Bouri, D.E.; Nougar, B.; Lamouchi, B.; Arab, A. Effect of non-plastic fines content and gradation on the liquefaction response of chlef sand. Transp. Infrastruct. Geotechnol. 2024, 11, 2638–2670. [Google Scholar] [CrossRef]
- Liu, C.; Ren, T.Z.; Zhang, R.; Gao, Q.F.; Zheng, J.L. Influence of gradation on resilient modulus of high plasticity soil-gravel mixture. Adv. Civ. Eng. 2020, 2020, 13. [Google Scholar] [CrossRef]
- Daghistani, F.; Abuel-Naga, H. Evaluating the Influence of sand particle morphology on shear strength: A comparison of experimental and machine learning approaches. Appl. Sci. 2023, 13, 22. [Google Scholar] [CrossRef]
- Chai, J.C.; Hino, T.; Qiao, Y.F.; Ding, W.Q. Progressive yielding/softening of soil-cement columns under embankment loading: A case study. Acta Geotech. 2024, 19, 7229–7241. [Google Scholar] [CrossRef]
- Koppa, N. Stress-strain behaviour of fine grained soils with varying sand content. Asian Rev. Civ. Eng. 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Zhao, F.; Cheng, S.Q.; Zhang, Y.Q.; Gou, M.J.; Jing, H.J.; Zhi, H.F. Study of sericite quartz schist coarse-grained soil by large-scale triaxial shear tests. Front. Phys. 2020, 8, 551232. [Google Scholar] [CrossRef]
- Khaleghnejad Tabari, M.; TaghaviGhalesari, A.; Janalizadeh Choobbasti, A.; Afzalirad, M. Large-scale experimental investigation of strength properties of composite clay. Geotech. Geol. Eng. 2019, 37, 5061–5075. [Google Scholar] [CrossRef]
- Deng, T.F.; Ai, Z.W.; Luo, S.H.; Gui, Y. Experimental study on shear characters of clay-sand mixture. People’s Yangtze River 2014, 45, 95–101. [Google Scholar]
- Xu, X.F.; Wei, H.Z.; Meng, Q.S.; Wei, C.F.; Ai, D.H. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests. Chin. J. Geotech. Eng. 2013, 35, 728–733. [Google Scholar]
- GB/T50123-2019; Standard for Geotechnical Testing Method. China Planning Press: Beijing, China, 2019.
- Bao, L.L.; Wei, F. Macroscopic and microscopic analysis of the effects of moisture content and dry density on the strength of loess. Sci. Prog. 2024, 107, 17. [Google Scholar] [CrossRef]
- Li, T.R.; Liu, J.G.; Ding, Y.Q.; Kong, T.Q.; Zhang, G.K.; Zhang, N.; Li, G. Effects of moisture and compactness on uniaxial dynamic compression of sandy soil under high strain rates. Transp. Geotech. 2022, 34, 9. [Google Scholar] [CrossRef]
- Xian, Y.; Wei, X.L.; Zhou, H.B.; Chen, N.S.; Liu, Y.; Liu, F.; Sun, H. Snowmelt-triggered reactivation of a loess landslide in Yili, Xinjiang, China: Mode and mechanism. Landslides 2022, 19, 1843–1860. [Google Scholar] [CrossRef]
- Lv, L.; Li, Y.; Zhou, C.M. Mechanistic analysis of splash erosion on loess by single raindrop impact: Interaction of soil compaction, water content, and raindrop energy. Biosyst. Eng. 2023, 236, 238–247. [Google Scholar] [CrossRef]
- Wei, Y.J.; Wu, X.L.; Xia, J.W.; Miller, G.A.; Cai, C.F.; Guo, Z.L.; Arash, H. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Tillage Res. 2019, 187, 50–59. [Google Scholar] [CrossRef]
- Lamandé, M.; Schjonning, P. Transmission of vertical stress in a real soil profile. Part III: Effect of soil water content. Soil Tillage Res. 2011, 114, 78–85. [Google Scholar] [CrossRef]
- Huang, X.J.; Ren, T.S.; Horn, R. Effective stress and shear strength parameters of unsaturated soils as affected by compaction and subsequent shearing. Eur. J. Soil Sci. 2023, 74, 17. [Google Scholar] [CrossRef]
- Marani, S.M.; Shahgholi, G.; Szymanek, M.; Tanaś, W. Experimental evaluation of nano coating on the draft force of tillage implements and its prediction using an adaptive neuro-fuzzy inference system (ANFIS). AgriEngineering 2024, 6, 1218–1234. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, H.B.Q.; Jiang, Y.H.; Tian, P.Z.; Cao, A.S.; Long, Y.X.; Liu, X.T.; Si, P.F. Slope monitoring optimization considering three-dimensional deformation and failure characteristics using the strength reduction method: A case study. Sci. Rep. 2023, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cui, D.S.; Chen, Q.; Yang, L.X.; Xiang, W. Bender element test and numerical simulation of sliding zone soil of Huangtupo landslide. Bull. Eng. Geol. Environ. 2021, 80, 8465–8480. [Google Scholar] [CrossRef]
- Fateh, A.M.A.; Goleij, M. The effect of maximum diameter of geogrid-reinforced sandy soil particles on shear strength parameters. Eng. Res. Express 2023, 5, 045086. [Google Scholar] [CrossRef]
- Pigeot, L.; Dufour, N.; Calissano, H.; Dermenonville, F.; Soive, A. Influence of the curing stress effect on the stiffness degradation curve of a silt stabilized with lime and cement. Eng. Geol. 2024, 337, 11. [Google Scholar] [CrossRef]
- Yang, H.; Tang, M.G.; Xiao, X.X.; Cai, G.J.; Wei, Y.; Li, S.L.; Li, H.J.; Xie, J.W. Physical Model Test of Deformation Self-Adaptive Mechanism of Landslide Mass. Water 2024, 16, 15. [Google Scholar] [CrossRef]
- Bo, Q.R.; Liu, J.W.; Shang, W.C.; Garg, A.; Jia, X.R.; Sun, K.Y. Application of ann in construction: Comprehensive study on identifying optimal modifier and dosage for stabilizing marine clay of Qingdao coastal region of China. J. Mar. Sci. Eng. 2024, 12, 465. [Google Scholar] [CrossRef]
- Feng, X.M.; Teng, J.D.; Wang, H.W. Influence mechanism of water content and compaction degree on shear strength of red clay with high liquid limit. Materials 2024, 17, 17. [Google Scholar] [CrossRef]
- Yang, C.; Wang, R.; Meng, Q.S. Study of soft soil triaxial shear creep test and model analysis. Rock Soil Mech. 2012, 33, 106–110. [Google Scholar]
- Qiu, J.L.; Lu, Y.Q.; Lai, J.X.; Zhang, Y.W.; Yang, T.; Wang, K. Experimental study on the effect of water gushing on loess metro tunnel. Environ. Earth Sci. 2020, 79, 19. [Google Scholar] [CrossRef]
- Zhao, S.X.; He, S.M.; Li, X.P.; Scaringi, G.; Liu, Y.; Deng, Y. Investigating the dynamic process of a rock avalanche through an MLS-MPM simulation incorporated with a nonlocal μ(I) rheology model. Landslides 2024, 21, 1483–1499. [Google Scholar] [CrossRef]
- Abdelmonem, H.H.; Abo Bakr, M.; Saad Eldin, M. Influence of wate content on the shear strength parameters for cohesive soil. J. Al-Azhar Univ. Eng. Sect. 2023, 18, 529–540. [Google Scholar] [CrossRef]
- Yong, X.L.; Zhang, Y.; Hou, Y.L.; Han, B.B.; An, N.; Zhang, H.; Ma, Y. Stability of loess high-fill slope based on monitored soil moisture changes. Res. Cold Arid. Reg. 2023, 15, 191–201. [Google Scholar] [CrossRef]
- Deng, Q.H.; Zhang, J.R.; Lu, F.; Fan, Z.Y.; Wang, Y.; Lin, Z. Stability assessment of tunnels excavated in loess with the presence of groundwater-A case study. Water 2024, 16, 16. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Minasny, B.; McBratney, A.B.; Young, L.M. Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma 2020, 360, 4. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Zhong, M.; Wei, C.F.; Zhang, W.H.; Hu, F.N. Shear strength features of soils developed from purple clay rock and containing less than two-millimeter rock fragments. J. Mt. Sci. 2016, 13, 1464–1480. [Google Scholar] [CrossRef]
- Dawidowski, J.; Koolen, A. Changes of soil water suction, conductivity and dry strength during deformation of wet undisturbed samples. Soil Tillage Res. 1987, 9, 169–180. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Q.G.; Horn, R.; Baumgartl, T. Shear strength of surface soil as affected by soil bulk density and soil water content. Soil Tillage Res. 2001, 59, 97–106. [Google Scholar] [CrossRef]
- Zeng, C.N.; Liu, H.L.; Chen, Y.M. Test study on influence of fine particle content on dynamic pore water pressure development mode of silt. Rock Soil Mech. 2008, 29, 2193–2198. [Google Scholar]
- Xia, K.M. A large deformation finite element model for soil compaction. Geomech. Geoengin. 2012, 7, 123–137. [Google Scholar] [CrossRef]
- Ram, B.K.; Shawez, M.; Gupta, V.; Rawat, G. Ground subsidence in Dar village (Darma valley), Pithoragarh district, Kumaun Himalaya, India: A Himalayan disaster in waiting. J. Earth Syst. Sci. 2024, 133, 14. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Deng, P.Y.; Yang, Z.B.; Wang, Y. Statistical analysis of physical and mechanical parameters of soil-rock mixture in China. Eng. Res. Express 2025, 7, 045103. [Google Scholar] [CrossRef]















| Properties | Result |
|---|---|
| Type | Gobi soil |
| Specific gravity (-) | 2.70 |
| Fine gravel, 2 mm–5 mm (%) | 6.7 |
| Sand grain, 0.075 mm~2 mm (%) | 84.3 |
| Fine grain, <0.075 mm (%) | 9.0 |
| Optimum water contents (%) | 10.5 |
| Maximum dry density (g/cm3) | 2.07 |
| Liquid limit (Particle size < 0.5 mm) (%) | 16.3 |
| Plastic limit (Particle size < 0.5 mm) (%) | 12.5 |
| Test Item | Component | Percentage (%) |
|---|---|---|
| XRD mineral phase | Quartz | 27.4 |
| Muscovite | 21.2 | |
| Phosphoferrite | 19.5 | |
| Clinochlore | 17.0 | |
| Calcite | 10.6 | |
| Gypsum | 4.2 |
| Test Item | Component | Percentage (%) |
|---|---|---|
| XRF elemental analysis | Si | 30.57 |
| Ca | 25.92 | |
| Fe | 19.19 | |
| K | 6.76 | |
| Mg | 6.07 | |
| Na | 3.64 | |
| Cl | 2.85 | |
| Ti | 1.66 | |
| S | 1.43 | |
| Mn | 0.45 | |
| P | 0.33 | |
| Ba | 0.31 | |
| Cu | 0.29 | |
| Sr | 0.28 | |
| Zn | 0.06 | |
| Rb | 0.05 | |
| Cr | 0.04 | |
| Zr | 0.03 | |
| Ni | 0.02 |
| Properties | Experiment Setting |
|---|---|
| Water contents (w) | 4%, 6%, 8%, 10.5% (wopt), 12.5% |
| Compaction degree (K) | 87%, 90%, 95% |
| Test method | Consolidated undrained shear test |
| Shear rate | 1.2 mm/min |
| Shear termination displacement | 6 mm |
| Vertical pressure (σv) | 50 kPa, 100 kPa, 200 kPa, 400 kPa |
| Number of samples | 5 × 3 × 4 = 60 |
| Mechanical Parameter | Stress Condition | Fitting Parameter | R2 | Fitting Formulation | |||||
|---|---|---|---|---|---|---|---|---|---|
| z0 | a | b | c | d | f | ||||
| Shear modulus G | σv = 50 kPa | 10.46 | 5.97 | −0.89 | 0.1730 | 0.0130 | −0.1224 | 0.9331 | z: Mechanical parameter x: Water contents w (%) y: Compaction degrees K (%) |
| σv = 100 kPa | 20.34 | 7.94 | −1.21 | 0.1719 | 0.0159 | −0.1479 | 0.9106 | ||
| σv = 200 kPa | 51.98 | −7.00 | −0.22 | 0.3248 | 0.0032 | −0.0173 | 0.9482 | ||
| σv = 400 kPa | 79.44 | −6.95 | −0.82 | 0.3132 | 0.0068 | −0.0160 | 0.8780 | ||
| Peak shear stress τmax | σv = 50 kPa | 14.93 | 39.90 | −4.44 | −0.9523 | 0.0591 | −0.3796 | 0.8780 | |
| σv = 100 kPa | 30.64 | 88.67 | −9.45 | −1.4307 | 0.1142 | −0.8544 | 0.8831 | ||
| σv = 200 kPa | 43.23 | 71.01 | −5.70 | −2.6209 | 0.0799 | −0.5241 | 0.9737 | ||
| σv = 400 kPa | 93.66 | 49.16 | 0.88 | −3.2540 | 0.0226 | −0.2653 | 0.9584 | ||
| Cohesion c | σv: 50~400 kPa | 22.59 | 36.56 | −4.88 | −0.4283 | 0.0580 | −0.3930 | 0.9105 | |
| Internal friction angle φ | σv: 50~400 kPa | 26.55 | 2.71 | 0.03 | −0.3511 | −0.0005 | 0.0081 | 0.9521 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, J.; Wu, J. Influence of Compaction and Water Content on the Shear Performance of Gobi Soil as a Sustainable Construction Material. Appl. Sci. 2025, 15, 13089. https://doi.org/10.3390/app152413089
Liu X, Wang J, Wu J. Influence of Compaction and Water Content on the Shear Performance of Gobi Soil as a Sustainable Construction Material. Applied Sciences. 2025; 15(24):13089. https://doi.org/10.3390/app152413089
Chicago/Turabian StyleLiu, Xiaoyang, Jiayu Wang, and Jin Wu. 2025. "Influence of Compaction and Water Content on the Shear Performance of Gobi Soil as a Sustainable Construction Material" Applied Sciences 15, no. 24: 13089. https://doi.org/10.3390/app152413089
APA StyleLiu, X., Wang, J., & Wu, J. (2025). Influence of Compaction and Water Content on the Shear Performance of Gobi Soil as a Sustainable Construction Material. Applied Sciences, 15(24), 13089. https://doi.org/10.3390/app152413089

