A “Ruler” to Measure the Elemental Concentration Level of Au and Its Application in the Zhongchuan Area of Western Qinling, China
Abstract
1. Introduction
2. Study Area, Materials, and Methods
2.1. Study Area
2.2. Materials and Methods
3. The “Ruler” to Measure Au Concentration Level
4. Results and Discussion
4.1. The Statistical Characteristics of Elemental Data and Concentration Levels
4.2. Geochemical Mapping of Single Scale
4.3. Comprehensive Geochemical Mapping of Variable Scales
5. Conclusions
- (1)
- A “ruler” is proposed to measure Au concentration levels objectively with 18 fixed values from the detection limit to the cut-off grade with easily understood numbers from 1 to 19.
- (2)
- The “ruler” for Au along with those for Mo and Sn has been applied to geochemical survey data on a 1:200,000 scale in the Zhongchuan area and on a 1:50,000 scale in the Jinshan region. The results show that elemental levels measured by the “ruler” can accurately indicate the background, anomalies, and mineralization of the elements, and comparisons among different elements, different regions, and different scales are applicable.
- (3)
- The superimposition of the geochemical maps with different survey scales are realized based on the proposed “ruler”. The variation in the elemental concentration levels with different survey scales in the superimposed geochemical maps indicates useful geochemical meanings for mineral exploration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, Y.; Mu, X.; Ren, T.; Ma, Z.; Liu, R.; Gong, Q.; Wang, M.; Gong, J.; Yang, W.; Yang, Y.; et al. Application of Geochemical Survey Data on Potential Evaluation of Mineral Resources in China; Geological Publishing House: Beijing, China, 2018; pp. 1–445. [Google Scholar]
- Zuluaga, M.; Norini, G.; Lima, A.; Albanese, S.; David, C.; Vivo, B. Stream sediment geochemical mapping of the Mount Pinatubo-Dizon Mine area, the Philippines: Implications for mineral exploration and environmental risk. J. Geochem. Explor. 2017, 175, 18–35. [Google Scholar] [CrossRef]
- Cao, J.; Li, W.; Isokov, M.; Movlanov, J.; Mirkhamdamov, M.; Ma, Z.; Weng, K.; Cao, K.; Meng, G. Distribution, enrichment characteristics and prospecting potential of lithium in Uzbekistan: Insights from 1:1 million geochemical mapping. J. Geochem. Explor. 2025, 268, 107606. [Google Scholar] [CrossRef]
- Lin, X.; Meng, G.; Pan, H.; Cheng, Z.; Yao, W.; Cheng, X. Continental-scale stream sediment geochemical mapping in southern China: An insight into surface processes and tectonic framework. J. Geochem. Explor. 2019, 207, 106362. [Google Scholar] [CrossRef]
- DZ/T 0145-2017; Code of Practice for Soil Geochemical Survey. Geological Publishing House: Beijing, China, 2017.
- DZ/T 0011-2015; Specification of Geochemical Reconnaissance Survey (1:50,000). Geological Publishing House: Beijing, China, 2015.
- An, Y.; Yan, T.; Gong, Q.; Wang, X.; Huang, Y.; Zhang, B.; Yin, Z.; Zhao, X.; Liu, N. Chromium (Cr) geochemical mapping based on fixed-values’ method: Case studies in China. Appl. Geochem. 2022, 136, 105168. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Zhang, X.; Huang, Z.; Huang, Y.; Long, Y.; Xu, Y.; Song, X.; Chen, Z.; Li, Y.; et al. Tin (Sn) geochemical mapping based on fixed-value method: A case illustration in Gejiu area, Southwest China. Appl. Sci. 2024, 14, 1765. [Google Scholar] [CrossRef]
- Li, P.; Gong, Q.; Chen, S.; Li, P.; Li, J.; Wu, X.; Li, X.; Wang, X.; Liu, N. Regional Geochemical Characteristics of Lithium in the Mufushan Area, South China. Appl. Sci. 2024, 14, 1978. [Google Scholar] [CrossRef]
- Jia, G.; Gu, W.; Gong, Q.; Xu, S.; Liu, Y.; Lv, Z. A 19-level fixed-value method to classify the Mo concentrations in Jianshui area of Yunnan province, China. Appl. Geochem. 2025, 180, 106289. [Google Scholar] [CrossRef]
- Zhu, X.; Li, P.; Gong, Q.; Gu, W.; Xu, S.; Tan, T. Geochemical Survey in Mojiang Area of Yunnan Province, China: Geochemical Map and Geochemical Anomaly Map. Appl. Sci. 2025, 15, 2592. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, M.; Liu, J.; Zhou, Y.; Gu, X.; Zhang, B. Geotectonic Evolution and Mineralization Zone of Gold Deposits in Western Qinling. Geotect. On. Metall. Og. 1997, 21, 307–314. [Google Scholar]
- Mao, J. Geology Distribution and Classification of Gold Deposits in the Western Qinling Belt Central China. Bull. Mineral. Petrol. Geochem. 2001, 20, 11–13. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhao, Y.; Jia, Z. The exploration progress and prospecting directions of gold deposits in the Western Qinling area of Gansu Province. Miner. Depos. 2014, 33, 941–942. [Google Scholar]
- Liu, Y.; Gao, Y.; Luo, W.; Ji, W. Metallogenic regularity and prospect prediction of metallic deposits in Wenquan–Zhongchuan area of Western Qinling. Geol. Surv. China 2018, 5, 40–49. [Google Scholar]
- Xie, X.; Cheng, H. Sixty years of exploration geochemistry in China. J. Geochem. Explor. 2014, 139, 4–8. [Google Scholar] [CrossRef]
- Xiang, Y.; Mu, X.; Ren, T.; Liu, R.; Wu, X. China regional geochemical exploration database. Geol. China 2018, 45, 32–44. [Google Scholar]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Huo, F.; Li, Y. The Formation and Geological Evolution of the Western Qinling Orogenic Belt; Northwest University Press: Xi’an, China, 1995; pp. 1–165. [Google Scholar]
- Zhang, G.; Zhang, Z.; Dong, Y. Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen: Implications for the Tectonic Evolution. Acta Petrol. Sin. 1995, 2, 101–114. [Google Scholar]
- Wang, X.; Wang, T.; Zhang, C. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. J. Asian Earth Sci. 2013, 72, 129–151. [Google Scholar] [CrossRef]
- Zeng, Q.; Mccuaig, T.; Tohver, E.; Bagas, L.; Lu, Y. Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications. Geol. J. 2014, 49, 402–423. [Google Scholar] [CrossRef]
- Feng, J.; Wang, D.; Wang, X.; Zeng, Y.; Li, T. Magmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao, Liba and Xiaogouli Gold Deposits. Acta Geol. Sin. 2004, 78, 529–533. [Google Scholar]
- Zhang, Z.; Mao, J.; Wang, Y. Characteristics of fluid inclusions in the gold deposits within Zhongchuan area western Qinling and their geological significance. Acta Petrol. Miner. 2004, 23, 147–157. [Google Scholar]
- Ke, C.; Wang, X.; Nie, Z.; Yang, Y.; Lv, X.; Wang, S.; Li, J. Age, geochemistry, Nd-Hf isotopes and relationship between granite and gold mineralization of Zhongchuan granitoid pluton in West Qinling. Geol. China 2020, 47, 1127–1154. [Google Scholar]
- Ke, C.; Wang, X.; Yang, Y.; Tian, Y.; Li, J.; Nie, Z.; Lv, X.; Wang, S.; Gong, M. Petrogenesis of dykes and its relationship to gold mineralization in the western Qinling belt: Constraints from zircon U-Pb age, geochemistry and Nd-Hf-S isotopes of Liba gold deposit. Miner. Depos. 2020, 39, 42–62. [Google Scholar]
- Zhang, G.; Meng, Q.; Yu, Z.; Sun, Y.; Zhou, D.; Guo, A. The orogenic process and dynamic characteristics of the Qinling orogen. Sci. China 1996, 3, 193–200. [Google Scholar]
- Feng, Y.; Cao, X.; Zhang, E.; Hu, Y.; Pan, X.; Yang, J.; Jia, Q.; Li, W. The evolution, structural pattern and characteristics of the Western Qinling Orogen. Northwest Geol. 2003, 1, 1–10. [Google Scholar]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Li, B.; Zhu, L.; Ding, L.; Ma, Y.; Xiong, X.; Yang, T.; Wang, F. Geology, isotope geochemistry, and ore genesis of the Liba gold deposit in the western Qinling orogen, China. Acta Geol. Sin. 2021, 95, 427–448. [Google Scholar]
- Chen, Y.; Wang, Y.; Luo, J.; Li, D.; Wang, J.; Long, L.; Zhang, H.; Geng, J. Characteristics and Genesis of Gold-Bearing Sulfide in the Liba Gold Deposit, West Qinling. Acta Petrol. Sin. 2025, 41, 1387–1405. [Google Scholar] [CrossRef]
- Jiang, Q. Geological features and Prospective analysis of Yawan gold deposit, Gansu. Gold Geol. 2004, 10, 32–38. [Google Scholar]
- Wu, H.; Duan, H.; Wang, S.; Li, M.; Kang, L. Gold Grade Variation and Its Forecast for Prospecting in the Jinshan Gold Deposit, Lixian County, Gansu Province. Geol. Prospect. 2006, 42, 19–23. [Google Scholar]
- Yang, G.; Yang, G.; Wang, G.; Zhou, X.; Li, J. Geological Characteristic and Ore-Controlling Factors of Jinshan Gold Deposit, Gansu Province. J. Earth Sci. Environ. 2008, 30, 32–37. [Google Scholar]
- Lai, X. The comprehensive study of prospecting prediction and primary halo geochemical characteristics of Jinshan gold deposit in Lixian County of Gansu. Geological Bulletin of China. Miner. Resour. Geol. 2021, 35, 748–762. [Google Scholar]
- Mu, X.; Zhao, W. Research on Metallogenic Mechanism and Prospecting Direction of the Mawu Gold Mining area in Min County, Gansu Province, China. Contrib. Geol. Miner. Resour. Res. 2011, 26, 272–276. [Google Scholar]
- Liu, K.; Liu, J.; Wu, J.; Yang, S.; Xin, X.; Li, Y. Fluid inclusion characteristics of the Mawu gold deposit in Gansu Province and their geological significance. Geol. China 2014, 41, 1594–1607. [Google Scholar]
- Guo, N.; Liu, C.; Cui, L.; Yao, W.; Li, G.; Gan, L.; Huang, Y. Igneous Assemblage and Metallogenic Background of the Mawu Gold Deposit in the Min-Li Ore Belt of the Western Qinling Orogen. Geoscience 2020, 34, 1261–1276. [Google Scholar]
- Xu, X.; Song, H. Geological Characteristics and Enrichment Laws of Tianjiahe Placer Gold Deposit in Lixian County, Gansu Province. Northwest Geol. 2020, 53, 175–183. [Google Scholar]
- DZ/T 0167-2006; Regional Geochemical Exploration Specifications. Ministry of Land and Resources: Beijing, China, 2006.
- Cheng, H.; Peng, M.; Yang, Z.; Liu, F.; Yang, K.; Zhao, C.; Zhou, Y.; Liu, X.; Tang, S.; Zhao, C. The Geochemical Background Values and Reference Values of Elements in Chinese Soil; Geological Press: Beijing, China, 2023; pp. 1–1396. [Google Scholar]
- Hou, Q.; Yang, Z.; Yu, T.; Xia, X.; Cheng, H.; Zhou, G. Geochemical Parameters of Chinese Soils; Geological Press: Beijing, China, 2020; pp. 1–3172. [Google Scholar]
- DZ/T 0208-2002; Specifications for Placer (Metallic Mineral) Exploration. Geological Publishing House: Beijing, China, 2003.
- DZ/T 0205-2002; Specification for Hard-Rock Gold Exploration. Geological Publishing House: Beijing, China, 2017.






| Level No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | References |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Au | <0.3 | 0.5 | 0.7 | 1.0 | 1.4 | 1.9 | 2.4 | 3.5 | 5 | 7 | 10 | 15 | 40 | 110 | 300 | 450 | 670 | 1000 | ≥1000 | This study |
| lg Au | −0.523 | −0.301 | −0.155 | 0.000 | 0.146 | 0.279 | 0.380 | 0.544 | 0.699 | 0.845 | 1.000 | 1.176 | 1.602 | 2.041 | 2.477 | 2.653 | 2.826 | 3 | - | |
| Δlg Au | - | 0.222 | 0.146 | 0.155 | 0.146 | 0.133 | 0.101 | 0.164 | 0.155 | 0.146 | 0.155 | 0.176 | 0.426 | 0.439 | 0.436 | 0.176 | 0.173 | 0.174 | - | |
| Color | [8] | |||||||||||||||||||
| Sn | <1 | 1.3 | 1.8 | 2.7 | 3.4 | 4.3 | 6.0 | 7.9 | 10 | 13 | 17 | 28 | 50 | 100 | 200 | 400 | 600 | 1000 | ≥1000 | [8] |
| Li | <5 | 8 | 17 | 29 | 34 | 40 | 50 | 62 | 70 | 78 | 88 | 99 | 132 | 175 | 232 | 460 | 930 | 1858 | ≥1858 | [9] |
| Mo | <0.3 | 0.37 | 0.45 | 0.55 | 0.68 | 1 | 1.43 | 2.07 | 3 | 3.8 | 4.8 | 6.1 | 9.1 | 20 | 100 | 144 | 208 | 300 | ≥300 | [10] |
| Ni | <2 | 6 | 10 | 18 | 25 | 32 | 39 | 48 | 60 | 70 | 100 | 190 | 245 | 495 | 1000 | 1260 | 1590 | 2000 | ≥2000 | [11] |
| Parameters | Au (a) | lg Au (a) | Mo (a) | lg Mo (a) | Sn (a) | lg Sn (a) | Au (b) | lg Au (b) | Mo (b) | lg Mo (b) | Sn (b) | lg Sn (b) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Minimum | 0.20 | −0.70 | 0.08 | −1.10 | 0.60 | −0.22 | 0.53 | −0.27 | 0.36 | −0.45 | 2.25 | 0.35 |
| Lower quartile | 1.50 | 0.18 | 0.55 | −0.26 | 2.80 | 0.45 | 1.11 | 0.04 | 0.63 | −0.20 | 3.10 | 0.49 |
| Median | 2.30 | 0.36 | 0.64 | −0.19 | 3.30 | 0.52 | 2.82 | 0.45 | 0.88 | −0.05 | 4.01 | 0.60 |
| Upper quartile | 3.20 | 0.51 | 0.75 | −0.12 | 3.90 | 0.59 | 8.76 | 0.94 | 1.13 | 0.05 | 7.19 | 0.86 |
| Maximum | 118.80 | 2.07 | 14.00 | 1.15 | 156.00 | 2.19 | 1680.00 | 3.23 | 2.52 | 0.40 | 11.90 | 1.08 |
| Mean | 3.07 | 0.49 | 0.72 | −0.14 | 3.76 | 0.57 | 33.13 | 0.58 | 0.93 | −0.06 | 5.06 | 0.66 |
| Standard deviation | 4.76 | 0.68 | 0.65 | −0.18 | 4.62 | 0.66 | 165.33 | 0.69 | 0.35 | 0.16 | 2.53 | 0.20 |
| Skewness | 13.92 | 0.59 | 13.69 | 2.4 | 28.99 | 1.67 | 7.87 | 1.26 | 0.89 | 0.13 | 0.96 | 0.51 |
| Kurtosis | 295 | 2.40 | 231 | 17.7 | 949 | 14.1 | 67.4 | 1.64 | 0.64 | −0.74 | −0.36 | −1.04 |
| Parameters | Au (a) | Mo (a) | Sn (a) | Au (b) | Mo (b) | Sn (b) |
|---|---|---|---|---|---|---|
| Minimum | 1 | 1 | 1 | 3 | 2 | 4 |
| Lower quartile | 6 | 5 | 5 | 5 | 5 | 5 |
| Median | 7 | 5 | 5 | 8 | 6 | 6 |
| Upper quartile | 8 | 6 | 6 | 11 | 7 | 8 |
| Maximum | 15 | 14 | 15 | 19 | 9 | 10 |
| Mean | 7 | 5 | 6 | 8 | 6 | 7 |
| Standard deviation | 2 | 1 | 1 | 4 | 1 | 2 |
| Skewness | 0.22 | 1.06 | 1.20 | 0.53 | −0.26 | 0.42 |
| Kurtosis | 0.55 | 8.31 | 4.95 | −0.59 | −0.26 | −0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Yu, B.; Gong, Q.; Wei, J.; Wei, Z.; Ren, L. A “Ruler” to Measure the Elemental Concentration Level of Au and Its Application in the Zhongchuan Area of Western Qinling, China. Appl. Sci. 2025, 15, 12958. https://doi.org/10.3390/app152412958
Gu W, Yu B, Gong Q, Wei J, Wei Z, Ren L. A “Ruler” to Measure the Elemental Concentration Level of Au and Its Application in the Zhongchuan Area of Western Qinling, China. Applied Sciences. 2025; 15(24):12958. https://doi.org/10.3390/app152412958
Chicago/Turabian StyleGu, Weixuan, Bin Yu, Qingjie Gong, Jiang Wei, Zixin Wei, and Liangliang Ren. 2025. "A “Ruler” to Measure the Elemental Concentration Level of Au and Its Application in the Zhongchuan Area of Western Qinling, China" Applied Sciences 15, no. 24: 12958. https://doi.org/10.3390/app152412958
APA StyleGu, W., Yu, B., Gong, Q., Wei, J., Wei, Z., & Ren, L. (2025). A “Ruler” to Measure the Elemental Concentration Level of Au and Its Application in the Zhongchuan Area of Western Qinling, China. Applied Sciences, 15(24), 12958. https://doi.org/10.3390/app152412958

