Effects of Plasma Power on By-Product Gas Formation from CHF3 and CH2F2 Process Gases in Semiconductor Etching Processes
Abstract
1. Introduction
1.1. Research Background
1.2. Environmental Necessity and Research Relevance
1.3. Research Objectives
- To quantitatively measure and compare profiles of major by-product gases emitted from each gas system under three plasma power conditions: 500 W, 600 W, and 700 W;
- To elucidate dominant reaction mechanisms according to the different levels of plasma power based on observed emission changes, particularly clarifying the point where reaction pathways bifurcate between the two chemical systems;
- To calculate CO2eq. indices representing the overall greenhouse effect of each process condition using volume ratios of all emission gases and established GWP values for quantitative environmental impact assessment; and
- To analyze complex interrelationships among process efficiency, stability, and environmental burden and propose optimal process operation strategies for sustainable semiconductor manufacturing
2. Experimental Methods and Analysis
2.1. Experimental Equipment and Conditions
2.2. Target Gases for Analysis
2.3. Environmental Impact Assessment Method
2.4. Statistical Analysis
3. Results and Discussion
3.1. Comparison of By-Product Gas Profiles by the Level of Plasma Power
3.1.1. Process Gas Dissociation Kinetics
3.1.2. Perfluorocarbon (PFC) Formation Trends
3.1.3. Unsaturated and Hydrogen-Containing By-Product Behavior
3.2. Reaction Mechanism Elucidation
3.2.1. CHF3 Plasma: Reaction Pathway Bifurcation at High Power
3.2.2. CH2F2 Plasma: Role of Hydrogen and CH3F Formation
3.3. Environmental Impact Assessment
3.3.1. Relative Environmental Impact Index (REII) Analysis
3.3.2. Process Stability Assessment
3.3.3. Optimization Trade-Offs: Efficiency, Stability, and Environmental Burden
3.4. Process Optimization and Environmental Strategies
3.4.1. Process-Specific Optimization Strategies
3.4.2. Environmental Management Strategies
4. Conclusions and Future Research
4.1. Key Findings
4.2. Academic and Practical Implications
4.3. Research Limitations and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Details of the Temporal Analysis Data
| Time Interval | Power | CF4 | C2F6 | c-C4F8 | C4F6 |
|---|---|---|---|---|---|
| 0–600 s | 500 W | 0.087 ± 0.004 | 0.0042 ± 0.0002 | 0.051 ± 0.003 | 0.00009 ± 0.00001 |
| 600–1200 s | 500 W | 0.084 ± 0.004 | 0.0041 ± 0.0002 | 0.048 ± 0.002 | 0.00008 ± 0.00001 |
| 1200–1800 s | 500 W | 0.083 ± 0.003 | 0.0040 ± 0.0002 | 0.047 ± 0.002 | 0.00007 ± 0.00001 |
| 1800–2400 s | 500 W | 0.086 ± 0.004 | 0.0041 ± 0.0002 | 0.049 ± 0.003 | 0.00008 ± 0.00001 |
| 2400–3000 s | 500 W | 0.085 ± 0.004 | 0.0041 ± 0.0002 | 0.050 ± 0.002 | 0.00008 ± 0.00001 |
| 3000–3600 s | 500 W | 0.085 ± 0.003 | 0.0040 ± 0.0002 | 0.049 ± 0.002 | 0.00008 ± 0.00001 |
| Time Interval | Power | CF4 | C2F6 | c-C4F8 | CH3F |
|---|---|---|---|---|---|
| 0–600 s | 500 W | 0.084 ± 0.004 | 0.0041 ± 0.0002 | 0.045 ± 0.002 | 0.0488 ± 0.0025 |
| 600–1200 s | 500 W | 0.082 ± 0.004 | 0.0040 ± 0.0002 | 0.044 ± 0.002 | 0.0495 ± 0.0024 |
| 1200–1800 s | 500 W | 0.081 ± 0.003 | 0.0039 ± 0.0002 | 0.043 ± 0.002 | 0.0498 ± 0.0026 |
| 1800–2400 s | 500 W | 0.082 ± 0.004 | 0.0040 ± 0.0002 | 0.044 ± 0.002 | 0.0501 ± 0.0025 |
| 2400–3000 s | 500 W | 0.083 ± 0.004 | 0.0040 ± 0.0002 | 0.044 ± 0.002 | 0.0496 ± 0.0024 |
| 3000–3600 s | 500 W | 0.082 ± 0.003 | 0.0040 ± 0.0002 | 0.044 ± 0.002 | 0.0499 ± 0.0025 |
Appendix B. Statistical Analysis Results
| Gas Type | F-Value | p-Value | Significance | Effect Size (η2) |
|---|---|---|---|---|
| CHF3 (unreacted) | 15.23 | <0.001 | *** | 0.741 |
| CF4 | 8.94 | 0.003 | ** | 0.598 |
| C4F6 | 45.67 | <0.001 | *** | 0.884 |
| CH2F2 (unreacted) | 12.87 | <0.001 | *** | 0.692 |
| CH3F | 7.33 | 0.007 | ** | 0.523 |
| Comparison | CHF3 (Unreacted) | CF4 | C4F6 |
|---|---|---|---|
| 500 W vs. 600 W | p = 0.045 * | p = 0.892 | p = 0.967 |
| 500 W vs. 700 W | p < 0.001 *** | p = 0.002 ** | p < 0.001 *** |
| 600 W vs. 700 W | p = 0.008 ** | p = 0.003 ** | p < 0.001 *** |
| Process Condition | Overall CV (%) | Trend Stability | Temporal Drift |
|---|---|---|---|
| CHF3—500 W | 4.3 ± 0.2 | High | Minimal |
| CHF3—600 W | 4.1 ± 0.2 | High | Minimal |
| CHF3—700 W | 5.8 ± 0.4 | Moderate | Notable |
| CH2F2—500 W | 4.7 ± 0.3 | High | Minimal |
| CH2F2—600 W | 4.5 ± 0.3 | High | Minimal |
| CH2F2—700 W | 4.9 ± 0.3 | High | Minimal |
References
- Oehrlein, G.S.; Hamaguchi, S. Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Sources Sci. Technol. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Fracassi, F.; d’Agostino, R.; Illuzzi, F. Evaluation of plasmas fed with hydrofluorocarbons–oxygen mixtures for SiO2 dry etching. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19, 427–432. [Google Scholar] [CrossRef]
- Schaepkens, M.; Standaert, T.E.F.M.; Rueger, N.R.; Sebel, P.G.M.; Oehrlein, G.S.; Cook, J.M. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 26–37. [Google Scholar] [CrossRef]
- Wang, X.H.; Xu, L.T.; Cheng, T. Self-Limited Etching of Silicon Nitride Using Cyclic Process with CH2F2 Chemistry. In Proceedings of the 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 26–27 June 2023; pp. 1–2. [Google Scholar]
- Standaert, T.E.; Hedlund, C.; Joseph, E.A.; Oehrlein, G.S.; Dalton, T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. 2004, 22, 53–60. [Google Scholar] [CrossRef]
- Tran, T.N.; Hayashi, T.; Iwayama, H.; Sekine, M.; Hori, M.; Ishikawa, K. Hydrofluoroethane plasma etching of SiN, SiO2, and poly-Si films with CHF2CF3, CF3CH3, and CHF2CH3. Appl. Surf. Sci. 2025, 684, 161815. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, J.H.; Zhu, C.C.; Liu, W.H. Effects of gas pressure and plasma power on the growth of carbon nanostructures. Appl. Surf. Sci. 2010, 256, 1996–1999. [Google Scholar] [CrossRef]
- Jo, S.Y.; Park, A.H.; Hong, S.J. Effects of the Applied Power of Remote Plasma System With Green Alternative Chamber Cleaning Gas of Carbonyl Fluoride. IEEE Trans. Semicond. Manuf. 2025, 38, 624–633. [Google Scholar] [CrossRef]
- Rathore, V.; Nema, S.K. The role of different plasma forming gases on chemical species formed in plasma activated water (PAW) and their effect on its properties. Phys. Scr. 2022, 97, 065003. [Google Scholar] [CrossRef]
- Gandhi, M.S.; Mok, Y.S. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. J. Environ. Sci. 2012, 24, 1234–1239. [Google Scholar] [CrossRef]
- Hori, M. Radical-controlled plasma processes. Rev. Mod. Plasma Phys. 2022, 6, 36. [Google Scholar] [CrossRef]
- McCulloch, A. Fluorocarbons in the global environment: A review of the important interactions with atmospheric chemistry and physics. J. Fluor. Chem. 2003, 123, 21–29. [Google Scholar] [CrossRef]
- Han, J.; Kiss, L.; Mei, H.; Remete, A.M.; Ponikvar-Svet, M.; Sedgwick, D.M.; Roman, R.; Fustero, S.; Moriwaki, H.; Soloshonok, V.A. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem. Rev. 2021, 121, 4678–4742. [Google Scholar] [CrossRef]
- Castro, P.J.; Aráujo, J.M.M.; Martinho, G.; Pereiro, A.B. Waste Management Strategies to Mitigate the Effects of Fluorinated Greenhouse Gases on Climate Change. Appl. Sci. 2021, 11, 4367. [Google Scholar] [CrossRef]
- Tsai, W.-T. Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas. J. Hazard. Mater. 2008, 159, 257–263. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC (United Nations Framework Convention on Climate Change). Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations Framework Convention on Climate Change: Bonn, Germany, 1998. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021. [Google Scholar]
- KS I 0587; Measurement Methods for the Volumetric Flow of Non-CO2 Greenhouse Gases (CF4, NF3, SF6, N2O) Used in Semiconductor and Display Processes. Korean Standards Service Network: Seoul, Republic of Korea, 2018.
- NIER (National Institute of Environmental Research). N2O, HFCs, PFCs, SF6, NF3 of Greenhouse Gas in Industrial Process—Fourier Transform Infra-Red Spectroscopy (ES 13501); National Institute of Environmental Research: Incheon, Republic of Korea, 2024. [Google Scholar]
- Kim, H.-S.; Woo, J.-C.; Joo, Y.-H.; Kim, C.-I. The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films. Trans. Electr. Electron. Mater. 2013, 14, 12–15. [Google Scholar] [CrossRef]
- Lundin, D.; Jensen, J.; Pedersen, H. Influence of pulse power amplitude on plasma properties and film deposition in high power pulsed plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2014, 32, 030602. [Google Scholar] [CrossRef]
- Niiranen, P.; Kapran, A.; Nadhom, H.; Čada, M.; Hubička, Z.; Pedersen, H.; Lundin, D. Plasma electron characterization in electron chemical vapor deposition. J. Vac. Sci. Technol. A 2024, 42, 023006. [Google Scholar] [CrossRef]
- Sirse, N.; Jeon, M.H.; Yeom, G.Y.; Ellingboe, A.R. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge. Plasma Sources Sci. Technol. 2014, 23, 065046. [Google Scholar] [CrossRef]
- Barela, M.J.; Anderson, H.M.; Oehrlein, G.S. Role of C2F4, CF2, and ions in C4F8/Ar plasma discharges under active oxide etch conditions in an inductively coupled GEC cell reactor. J. Vac. Sci. Technol. A 2005, 23, 408–416. [Google Scholar] [CrossRef]
- D’Agostino, R.; Cramarossa, F.; Fracassi, F.; Desimoni, E.; Sabbatini, L.; Zambonin, P.G.; Caporiccio, G. Polymer film formation in C2F6-H2 discharges. Thin Solid Film. 1986, 143, 163–175. [Google Scholar] [CrossRef]
- Lee, B.J.; Hwang, Y.; Jo, D.K.; Jeong, J. A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere 2023, 14, 1220. [Google Scholar] [CrossRef]
- Winters, H.F.; Coburn, J.W. Surface science aspects of etching reactions. Surf. Sci. Rep. 1992, 14, 162–269. [Google Scholar] [CrossRef]
- Schaepkens, M.; Oehrlein, G.S. A Review of SiO2 Etching Studies in Inductively Coupled Fluorocarbon Plasmas. J. Electrochem. Soc. 2001, 148, C211. [Google Scholar] [CrossRef]
- Amanatides, E.; Hammad, A.; Katsia, E.; Mataras, D. High pressure regime of plasma enhanced deposition of microcrystalline silicon. J. Appl. Phys. 2005, 97, 073303. [Google Scholar] [CrossRef]
- Ding, S.; Garofalo, A.M.; Wang, H.Q.; Weisberg, D.B.; Li, Z.Y.; Jian, X.; Eldon, D.; Victor, B.S.; Marinoni, A.; Hu, Q.M.; et al. A high-density and high-confinement tokamak plasma regime for fusion energy. Nature 2024, 629, 555–560. [Google Scholar] [CrossRef]
- Boltalina, O.V.; Popov, A.A.; Kuvychko, I.V.; Shustova, N.B.; Strauss, S.H. Perfluoroalkylfullerenes. Chem. Rev. 2015, 115, 1051–1105. [Google Scholar] [CrossRef]
- Hayashi, T.; Ishikawa, K.; Sekine, M.; Hori, M.; Kono, A.; Suu, K. Dissociation Channels of c-C4F8 to CF2 Radical in Reactive Plasma. Jpn. J. Appl. Phys. 2011, 50, 036203. [Google Scholar] [CrossRef]
- Christophorou, L.G.; Olthoff, J.K. Electron Interactions With c-C4F8. J. Phys. Chem. Ref. Data 2001, 30, 449–473. [Google Scholar] [CrossRef]
| Category | Context | |
|---|---|---|
| QMS | Model | isepa-S, EL, Korea |
| Flow rate range | (0.01~5.0) L/min | |
| mass range | 0 to 200 amu | |
| FTIR | Model | DX4000, Gasmet, Finland |
| Wavenumber range | Full Range: 200~1050 nm | |
| Device operates | 4200–900 cm−1 | |
| Process time | 1 h (3600 s) | |
| Process Gas | Plasma Power | Total Reduction | ||
|---|---|---|---|---|
| 500 W | 600 W | 700 W | ||
| CH2F2 | 0.170 ± 0.008 | 0.165 ± 0.007 | 0.147 ± 0.006 | −13.7% |
| CHF3 | 0.347 ± 0.015 | 0.320 ± 0.013 | 0.284 ± 0.012 | −18.1% |
| By-Product Gas | Process Gas | Rate of By-Product Gas Generation by Plasma Power | Change Rate | ||
|---|---|---|---|---|---|
| 500 W | 600 W | 700 W | |||
| CF4 | CH2F2 | 0.082 ± 0.004 | 0.082 ± 0.004 | 0.083 ± 0.004 | +1.2% |
| CHF3 | 0.085 ± 0.004 | 0.085 ± 0.004 | 0.068 ± 0.003 | −20.0% * | |
| C2F6 | CH2F2 | 0.004 ± 0.0002 | 0.0038 ± 0.0002 | 0.0035 ± 0.0002 | −12.5% |
| CHF3 | 0.0041 ± 0.0002 | 0.0040 ± 0.0002 | 0.0041 ± 0.0002 | 0% | |
| c-C4F8 | CH2F2 | 0.044 ± 0.002 | 0.042 ± 0.002 | 0.039 ± 0.002 | −11.4% |
| CHF3 | 0.049 ± 0.002 | 0.048 ± 0.002 | 0.040 ± 0.002 | −18.4% * | |
| By-Product Gas | Process Gas | Rate of By-Product Gas Generation by Plasma Power | Change Rate | ||
|---|---|---|---|---|---|
| 500 W | 600 W | 700 W | |||
| C4F6 | CH2F2 | 0.00052 ± 0.00003 | 0.00043 ± 0.00002 | 0.00033 ± 0.00002 | −36.5% * |
| CHF3 | 0.00008 ± 0.00001 | 0.00009 ± 0.00001 | 0.0016 ± 0.0001 | +1900% ** | |
| CH3F | CH2F2 | 0.0495 ± 0.0025 | 0.0520 ± 0.0026 | 0.0554 ± 0.0028 | +11.9% * |
| CHF3 | <0.001 | <0.001 | <0.001 | --- | |
| Reaction | Equation |
|---|---|
| CHF3 + e− → CF3• + H• + e− | (2) |
| CHF3 + e− → CF2• + HF + e− | (3) |
| CF3• + CF3• → C2F6 | (4) |
| CF2• + CF2• → C2F4 → CF4 + C | (5) |
| 2C2F4 → c-C4F8 | (6) |
| Reaction | Equation |
|---|---|
| CF4 + e− → CF2• + 2F• + e− (secondary dissociation) | (7) |
| c-C4F8 + e− → 2C2F4 + e− | (8) |
| C2F4 + e− → C2F2 + 2F• + e− | (9) |
| C2F2 + C2F4 → C4F6 (polymerization reaction) | (10) |
| Reaction | Equation |
|---|---|
| CH2F2 + e− → CH2• + 2F• + e− | (11) |
| CH2F2 + e− → CHF• + H• + F• + e− | (12) |
| CH2• + H• → CH3• | (13) |
| CH3• + F• → CH3F | (14) |
| By-Product Gas | GWP | CHF3 Process REII | CH2F2 Process REII | ||||
|---|---|---|---|---|---|---|---|
| 500 W | 600 W | 700 W | 500 W | 600 W | 700 W | ||
| CF4 | 7350 | 602.7 | 602.7 | 610.1 | 624.8 | 624.8 | 499.8 |
| C2F6 | 12,400 | 49.6 | 47.1 | 43.4 | 50.8 | 49.6 | 50.8 |
| c-C4F8 | 10,200 | 448.8 | 428.4 | 397.8 | 499.8 | 489.6 | 408.0 |
| C4F6 | <1 | 0.05 | 0.04 | 0.03 | 0.008 | 0.009 | 0.16 |
| CHF3 | 14,600 | - | - | - | 5066.2 | 4672.0 | 4146.4 |
| CH2F2 | 771 | 131.1 | 127.2 | 113.3 | - | - | - |
| CH3F | 135 | 6.7 | 7.0 | 7.5 | <0.1 | <0.1 | <0.1 |
| Total REII | 1238.9 | 1212.5 | 1172.1 | 6241.6 | 5836.0 | 5105.2 | |
| Change Rate | Baseline | −2.1% | −5.4% * | Baseline | −6.5% * | −18.2% ** | |
| Plasma Power | CH2F2 Process | CHF3 Process |
|---|---|---|
| 500 W | 4.7 ± 0.3 | 4.3 ± 0.2 |
| 600 W | 4.5 ± 0.3 | 4.1 ± 0.2 |
| 700 W | 4.9 ± 0.3 | 5.8 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, D.K.; Woo, J.; Lee, J.; Lee, B.-J.; Jeon, E.-c. Effects of Plasma Power on By-Product Gas Formation from CHF3 and CH2F2 Process Gases in Semiconductor Etching Processes. Appl. Sci. 2025, 15, 12296. https://doi.org/10.3390/app152212296
Min DK, Woo J, Lee J, Lee B-J, Jeon E-c. Effects of Plasma Power on By-Product Gas Formation from CHF3 and CH2F2 Process Gases in Semiconductor Etching Processes. Applied Sciences. 2025; 15(22):12296. https://doi.org/10.3390/app152212296
Chicago/Turabian StyleMin, Dae Kee, Jiyun Woo, Joohee Lee, Bong-Jae Lee, and Eui-chan Jeon. 2025. "Effects of Plasma Power on By-Product Gas Formation from CHF3 and CH2F2 Process Gases in Semiconductor Etching Processes" Applied Sciences 15, no. 22: 12296. https://doi.org/10.3390/app152212296
APA StyleMin, D. K., Woo, J., Lee, J., Lee, B.-J., & Jeon, E.-c. (2025). Effects of Plasma Power on By-Product Gas Formation from CHF3 and CH2F2 Process Gases in Semiconductor Etching Processes. Applied Sciences, 15(22), 12296. https://doi.org/10.3390/app152212296

