Quantifying Bilateral Synchrony and Asymmetry of Neurovascular Responses to Post-Occlusive Reactive Hyperemia
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Technologies
2.4. Signal Analysis
2.4.1. Cross-Signal Similarity Index (CSSI)
2.4.2. Lag at Maximum Correlation (τ*)
2.4.3. Signal Direction Index (SDI)
2.4.4. Integrated Bilateral Index of Similarity (IBIL)
2.4.5. Bilateral Magnitude Difference Index (BMDI)
2.4.6. Integrated Bilateral Index with Sign (IBIS)
2.4.7. Directional Concordance Index (DCI)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manuel, J.; Färber, N.; Gerlach, D.A.; Heusser, K.; Jordan, J.; Tank, J.; Beissner, F. Deciphering the neural signature of human cardiovascular regulation. eLife 2020, 9, e55316. [Google Scholar] [CrossRef] [PubMed]
- Gordan, R.; Gwathmey, J.K.; Xie, L.H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 2015, 7, 204. [Google Scholar] [CrossRef]
- Furlan, J.C.; Fehlings, M.G.; Shannon, P.; Norenberg, M.D.; Krassioukov, A.V. Descending vasomotor pathways in humans: Correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J. Neurotrauma 2003, 20, 1351–1363. [Google Scholar] [CrossRef]
- Partida, E.; Mironets, E.; Hou, S.; Tom, V.J. Cardiovascular dysfunction following spinal cord injury. Neural Regen. Res. 2016, 11, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.; Rezendes, C.; Pinto, P.C. Enhancing the quantification of post-occlusive reactive hyperemia: A multimodal optical approach. Pflügers Arch.-Eur. J. Physiol. 2025, 477, 1213–1224. [Google Scholar] [CrossRef]
- Silva, H.; Ferreira, H.A.; da Silva, H.P.; Monteiro Rodrigues, L. The venoarteriolar reflex significantly reduces contralateral perfusion as part of the lower limb circulatory homeostasis in vivo. Front. Physiol. 2018, 9, 1123. [Google Scholar] [CrossRef]
- Silva, H.; Rezendes, C. Revisiting the venoarteriolar reflex—Further insights from upper limb dependency in healthy subjects. Biology 2024, 13, 715. [Google Scholar] [CrossRef]
- Monteiro Rodrigues, L.; Rocha, C.; Andrade, S.; Granja, T.; Gregório, J. The acute adaptation of skin microcirculatory perfusion in vivo does not involve a local response but rather a centrally mediated adaptive reflex. Front. Physiol. 2023, 14, 1177583. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Rocha, C.; Ferreira, H.; Silva, H. Different lasers reveal different skin microcirculatory flowmotion—Data from the wavelet transform analysis of human hindlimb perfusion. Sci. Rep. 2019, 9, 16951. [Google Scholar] [CrossRef] [PubMed]
- Rosenberry, R.; Nelson, M.D. Reactive hyperemia: A review of methods, mechanisms, and considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Black, M.A.; Pyke, K.E.; Padilla, J.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef]
- Coccarelli, A.; Nelson, M.D. Modeling reactive hyperemia to better understand and assess microvascular function: A review of techniques. Ann. Biomed. Eng. 2023, 51, 479–492. [Google Scholar] [CrossRef] [PubMed]
- López-Galán, E.; Montoya-Pedrón, A.; Barrio-Deler, R.; Sánchez-Hechavarría, M.E.; Muñoz-Bustos, M.E.; Muñoz-Bustos, G.A. Reactive hyperemia and cardiovascular autonomic neuropathy in type 2 diabetic patients: A systematic review of randomized and nonrandomized clinical trials. Medicina 2023, 59, 770. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.L.; Silver, A.E.; Shvenke, E.; Schopfer, D.W.; Jahangir, E.; Titas, M.A.; Shpilman, A.; Menzoian, J.O.; Watkins, M.T.; Raffetto, J.D.; et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Ishigami, Y.; Otaki, Y.; Izumi, M.; Hiraoka, K.; Inoue, T.; Takamitsu, Y. Impairment of vascular responses to reactive hyperemia and nitric oxide in chronic renal failure. Nephron 2002, 92, 529–535. [Google Scholar] [CrossRef]
- Merino, J.; Megias-Rangil, I.; Ferré, R.; Plana, N.; Girona, J.; Rabasa, A.; Aragonés, G.; Cabré, A.; Bonada, A.; Heras, M.; et al. Body weight loss by very-low-calorie diet program improves small artery reactive hyperemia in severely obese patients. Obes. Surg. 2013, 23, 17–23. [Google Scholar] [CrossRef]
- Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: In physiology and in disease states. Am. J. Biomed. Sci. Res. 2022, 15, 153–177. [Google Scholar] [CrossRef]
- Tóth, A.; Pal, M.; Intaglietta, M.; Johnson, P.C. Contribution of anaerobic metabolism to reactive hyperemia in skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2643–H2653. [Google Scholar] [CrossRef]
- Davis, M.J. Perspective: Physiological role(s) of the vascular myogenic response. Microcirculation 2012, 19, 99–114. [Google Scholar] [CrossRef]
- Lorenzo, S.; Minson, C.T. Human cutaneous reactive hyperaemia: Role of BKCa channels and sensory nerves. J. Physiol. 2007, 585, 295–303. [Google Scholar] [CrossRef]
- McGarr, G.W.; Cheung, S.S. Effects of sensory nerve blockade on cutaneous microvascular responses to ischemia-reperfusion injury. Microvasc. Res. 2022, 144, 104091. [Google Scholar] [CrossRef]
- Tagawa, T.; Imaizumi, T.; Endo, T.; Shiramoto, M.; Harasawa, Y.; Takeshita, A. Role of nitric oxide in reactive hyperemia in human forearm vessels. Circ. Res. 1994, 74, 376–382. [Google Scholar] [CrossRef]
- Roddie, I. Circulation to skin and adipose tissue. In Handbook of Physiology: The Cardiovascular System; American Physiological Society: Bethesda, MD, USA, 1983; pp. 285–317. [Google Scholar]
- Silva, H.; Šorli, J.; Lenasi, H. Oral glucose load and human cutaneous microcirculation: An insight into flowmotion assessed by wavelet transform. Biology 2021, 10, 953. [Google Scholar] [CrossRef]
- Muntzel, M.S.; Anderson, E.A.; Johnson, A.K.; Mark, A.L. Mechanisms of insulin action on sympathetic nerve activity. Clin. Exp. Hypertens. 1995, 17, 39–50. [Google Scholar] [CrossRef]
- Rajapakse, N.W.; Chong, A.L.; Zhang, W.Z.; Kaye, D.M. Insulin-mediated activation of the L-arginine nitric oxide pathway in man, and its impairment in diabetes. PLoS ONE 2013, 8, e61840. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Kellogg, D.L. Mechanisms and modulators of temperature regulation: Local thermal control of the human cutaneous circulation. J. Appl. Physiol. 2010, 109, 1229–1238. [Google Scholar] [CrossRef]
- Minson, C.T.; Berry, L.T.; Joyner, M.J. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J. Appl. Physiol. 2001, 91, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Krupatkin, A.I. The influence of sympathetic innervation on the skin microvascular tone and blood flow oscillations. Hum. Physiol. 2006, 32, 584–592. [Google Scholar] [CrossRef]
- Silva, H.; Ferreira, H.; Bujan, M.J.; Rodrigues, L.M. Regarding the quantification of peripheral microcirculation—Comparing responses evoked in vivo by postural changes, suprasystolic occlusion and oxygen breathing. Microvasc. Res. 2015, 99, 110–117. [Google Scholar] [CrossRef]
- Kishimoto, S.; Matsumoto, T.; Maruhashi, T.; Iwamoto, Y.; Kajikawa, M.; Oda, N.; Matsui, S.; Hashimoto, H.; Hidaka, T.; Kihara, Y.; et al. Reactive hyperemia–peripheral arterial tonometry is useful for assessment of not only endothelial function but also stenosis of the digital artery. Int. J. Cardiol. 2018, 260, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, E.; Jamieson, A.; Chiesa, S.T.; Hughes, A.D.; Jones, S. A short review of application of near-infrared spectroscopy (NIRS) for the assessment of microvascular post-occlusive reactive hyperaemia (PORH) in skeletal muscle. Front. Physiol. 2024, 15, 1480720. [Google Scholar] [CrossRef]
- De Mul, F.F.M.; Morales, F.; Smit, A.J.; Graaff, R. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring. IEEE Trans. Biomed. Eng. 2005, 52, 184–190. [Google Scholar] [CrossRef]
- Roustit, M.; Blaise, S.; Millet, C.; Cracowski, J.L. Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Microvasc. Res. 2010, 79, 102–108. [Google Scholar] [CrossRef]
- Jasperse, J.L.; Shoemaker, J.K.; Gray, E.J.; Clifford, P.S. Positional differences in reactive hyperemia provide insight into the initial phase of exercise hyperemia. J. Appl. Physiol. 2015, 119, 569–575. [Google Scholar] [CrossRef]
- Tankanag, A.V.; Grinevich, A.A.; Tikhonova, I.V.; Chaplygina, A.V.; Chemeris, N.K. Phase synchronization of skin blood flow oscillations in humans under asymmetric local heating. Biophysics 2017, 62, 629–635. [Google Scholar] [CrossRef]
- Crivelli, D.; Polimeni, E.; Crotti, D.; Bottini, G.; Salvato, G. Bilateral skin temperature drop and warm sensibility decrease following modulation of body part ownership through mirror-box illusion. Cortex 2021, 135, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.V.T.; Toska, K.; Wesche, J. Rapid, large, and synchronous sweat and cardiovascular responses upon minor stimuli in healthy subjects: Dynamics and reproducibility. Front. Neurol. 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed]



| Total | Males | Females | |
|---|---|---|---|
| Number of subjects | 12 | 6 | 6 |
| Age | 21.6 ± 1.9 | 21.2 ± 1.2 | 22.0 ± 2.4 |
| Body mass index (kg/m2) | 23.3 ± 4.2 | 21.8 ± 2.8 | 24.6 ± 5.0 |
| Systolic blood pressure | 115.2 ± 8.4 | 118.0 ± 4.5 | 112.8 ± 10.5 |
| Diastolic blood pressure | 76.2 ± 8.9 | 73.0 ± 8.6 | 78.2 ± 9.5 |
| Fasting period | 3.4 ± 0.8 | 3.4 ± 0.7 | 3.3 ± 0.1 |
| Menstrual cycle duration (days) | - | - | 29 ± 1 |
| Menstrual cycle day | - | - | 5 ± 2 |
| Parameter | Definition | Theoretical Range |
|---|---|---|
| CSSI (Cross-Signal Similarity Index) | Maximum cross-correlation coefficient between homologous signals in both fingers within each phase. | −1 to +1 |
| τ* (lag at maximum correlation) | Time lag at which the cross-correlation reaches its maximum (corresponding to CSSI). | ms (positive or negative) |
| SDI (Signal Direction Index) | Directional concordance of changes (Δ vs. baseline) between arms, for each modality and phase. | −1, 0, +1 |
| IBIL (Integrated Bilateral Index) | Mean multimodal CSSI (blood flow, temperature, EDA) within each phase. | −1 to +1 |
| BDMI (Bilateral Magnitude Difference Index) | Relative difference between the amplitude of changes (Δ vs. baseline) in both arms. | 0 to 1 |
| IBIS (Integrated Bilateral Index with Sign) | Mean CSSI across modalities, weighted by directionality (only modalities with SDI = +1 contribute). | 0 to 1 |
| DCI (Directional Concordance Index) | Multimodal directional coherence between arms (cosine similarity between vectors of Δ values across modalities). | −1 to +1 |
| Test Hand (T) | Contralateral Hand (C) | p-Value (T vs. C) | |
|---|---|---|---|
| Skin blood flow (AU) | |||
| Baseline (base) | 443.4 (37.3; 781.1) | 461.5 (49.5; 759.7) | 0.155 |
| Occlusion (occ) | 12.9 (6.3; 63.3) | 456.9 (62.9; 724.8) | 0.003 * |
| Hyperemia (hyper) | 508.9 (172.9; 735.8) | 495.8 (59.4; 672.9) | 0.041 * |
| Δ II-I (%) | −96.4 (−99.2; −5.2) | −8.0 (−48.6; 59.6) | 0.002 * |
| Δ III-I (%) | 17.3 (−17.7; 425.6) | −5.8 (−37.0; 117.6) | 0.019 * |
| p-value (occ vs. base) | 0.003 * | 0.006 * | - |
| p-value (hyper vs. base) | 0.084 | 0.366 | - |
| Skin temperature (˚C) | |||
| Baseline | 30.2 (22.4; 34.5) | 31.1 (23.0; 33.5) | 0.108 |
| Occlusion | 29.2 (22.5 33.0) | 30.8 (22.7; 33.2) | 0.012 * |
| Hyperemia | 30.1 (22.7; 34.1) | 30.5 (23.4; 33.3) | 0.286 |
| Δ II-I (%) | −3.0 (−6.1; 3.3) | −0.3 (−5.7; 5.4) | 0.012 * |
| Δ III-I (%) | 0.4 (−3.8; 10.5) | −0.5 (−5.1; 11.7) | 0.814 |
| p-value (occ vs. base) | 0.398 | 0.721 | - |
| p-value (hyper vs. base) | 0.005 * | 0.005 * | - |
| Electrodermal activity (µS) | |||
| Baseline | 8.3 (2.4; 20.6) | 8.7 (3.6; 23.4) | 0.142 |
| Occlusion | 13.5 (3.7; 24.6) | 13.2 (5.0; 24.6) | 0.767 |
| Hyperemia | 15.0 (4.8; 24.4) | 11.5 (7.4; 24.3) | 0.374 |
| Δ II-I (%) | 32.2 (−2.6; 142.1) | 29.9 (1.2; 69.0) | 0.328 |
| Δ III-I (%) | 41.9 (10.8; 100.4) | 25.9 (−7.7; 120.1) | 0.075 |
| p-value (occ vs. base) | 0.003 * | 0.005 * | |
| p-value (hyper vs. base) | 0.026 * | 0.013 * | |
| Pulse (min−1) | |||
| Baseline | - | 76 (53; 95) | - |
| Occlusion | - | 77 (53; 101) | - |
| Hyperemia | - | 80 (53; 95) | - |
| Δ II-I (%) | - | 1.3 (−5.1; 10.0) | - |
| Δ III-I (%) | - | −1.2 (−5.3; 18.8) | - |
| p-value (occ vs. base) | - | 0.181 | - |
| p-value (hyper vs. base) | - | 0.893 | - |
| Signal | Phase | CSSI | τ* (ms) | BDMI | SDI (+1/0/−1) |
|---|---|---|---|---|---|
| Skin blood flow | Baseline (base) | 0.887 (0.264; 0.961) | 15.0 (−7.3; 1090.3) | - | - |
| Occlusion (occ) | 0.065 (−0.057; 0.292) | 210.0 (−2000.0; 2000) | 0.820 (0.183; 1.000) | 9/0/3 | |
| Hyperemia (hyper) | 0.385 (−0.128; 0.730) | 5.0 (−1780.0; 1785.0) | 0.815 (0.108; 1.000) | 7/0/5 | |
| p-value (occ vs. base) | 0.002 * | 0.410 | - | - | |
| p-value (hyper vs. base) | 0.002 * | 0.424 | - | - | |
| p-value (hyper vs. occ) | - | - | 0.656 | 0.414 | |
| Skin temperature | Baseline (base) | 0.933 (−0.655; 0.989) | 0.0 (−1884.5; 1518.8) | - | - |
| Occlusion (occ) | −0.027 (−0.880; 0.978) | 0.0 (−2000; 2000) | 0.495 (0.144; 1.000) | 9/0/3 | |
| Hyperemia (hyper) | −0.294 (−0.912; 0.935) | −930.0 (−2000; 2000) | 0.540 (0.087; 1.000) | 10/0/2 | |
| p-value (occ vs. base) | 0.059 | 0.835 | - | - | |
| p-value (hyper vs. base) | 0.002 * | 0.441 | - | - | |
| p-value (hyper vs. occ) | - | - | 0.919 | 0.317 | |
| Electrodermal activity | Baseline (base) | 0.951 (0.041; 0.988) | 0.0 (−1450.0; 249.0) | - | - |
| Occlusion (occ) | 0.816 (−0.138; 0.897) | 90.0 (−161.5; 1534.8) | 0.300 (0.018; 1.000) | 11/0/1 | |
| Hyperemia | 0.766 (0.000; 0.973) | 0.0 (−1598.5; 547.0) | 0.460 (0.096; 1.000) | 10/1/1 | |
| p-value (occ vs. base) | 0.117 | 0.113 | - | - | |
| p-value (hyper vs. base) | 0.062 | 0.767 | - | - | |
| p-value (hyper vs. occ) | - | - | 0.168 | 0.785 |
| Phase | IBIL | DCI | IBIS |
|---|---|---|---|
| Baseline (base) | 0.843 (0.256; 0.963) | - | 0.843 (0.256; 0.963) |
| Occlusion (occ) | 0.174 (−0.160; 0.644) | 0.667 (−0.150; 1.000) | 0.183 (−0.172; 0.644) |
| Hyperemia (hyper) | 0.196 (−0.038; 0.763) | 0.333 (−0.241; 1.000) | 0.232 (−0.193; 0.636) |
| p-value (occ vs. base) | 0.005 * | - | 0.004 * |
| p-value (hyper vs. base) | 0.003 * | - | 0.002 * |
| p-value (hyper vs. occ) | - | 0.546 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.; Lavrador, N.; Ferreira, H.A. Quantifying Bilateral Synchrony and Asymmetry of Neurovascular Responses to Post-Occlusive Reactive Hyperemia. Appl. Sci. 2025, 15, 12142. https://doi.org/10.3390/app152212142
Silva H, Lavrador N, Ferreira HA. Quantifying Bilateral Synchrony and Asymmetry of Neurovascular Responses to Post-Occlusive Reactive Hyperemia. Applied Sciences. 2025; 15(22):12142. https://doi.org/10.3390/app152212142
Chicago/Turabian StyleSilva, Henrique, Nicole Lavrador, and Hugo Alexandre Ferreira. 2025. "Quantifying Bilateral Synchrony and Asymmetry of Neurovascular Responses to Post-Occlusive Reactive Hyperemia" Applied Sciences 15, no. 22: 12142. https://doi.org/10.3390/app152212142
APA StyleSilva, H., Lavrador, N., & Ferreira, H. A. (2025). Quantifying Bilateral Synchrony and Asymmetry of Neurovascular Responses to Post-Occlusive Reactive Hyperemia. Applied Sciences, 15(22), 12142. https://doi.org/10.3390/app152212142

