Physicochemical Determinants of Storage Stability in Spore-Based Bacterial Biopreparations for Agricultural Use
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Bacteria Cultivation
2.3. Experimental Design
2.4. Preservation Techniques
2.4.1. Freeze-Drying
2.4.2. Freezing
2.4.3. Spray Drying
2.5. Enumeration of Vegetative Cells and Spores
2.6. Statistical Analysis
3. Results
3.1. Storage Conditions
3.2. Preservation Techniques
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFU | Colony Forming Unit |
References
- Toader, G.; Chiurciu, V.; Filip, V.; Burnichi, F.; Toader, E.V.; Enea, C.; Trifan, D.; Rîșnoveanu, L. Bacterial biopreparations—A “green revolution” for agriculture. Res. J. Agric. Sci. 2020, 52, 198–205. [Google Scholar]
- Pylak, M.; Oszust, K.; Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 2019, 18, 597–616. [Google Scholar] [CrossRef]
- Marwal, A.; Srivastava, A.K.; Gaur, R.K. Plant viruses as biopesticides. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–194. [Google Scholar] [CrossRef]
- Narwade, J.D.; Odaneth, A.A.; Lele, S.S. Solid-state fermentation in an earthen vessel: Trichoderma viride spore-based biopesticide production using corn cobs. Fungal Biol. 2023, 127, 1146–1156. [Google Scholar] [CrossRef]
- Rowińska, P.; Gutarowska, B.; Janas, R.; Szulc, J. Biopreparations for the decomposition of crop residues. Microb. Biotechnol. 2024, 17, e14534. [Google Scholar] [CrossRef]
- Buragienė, S.; Šarauskis, E.; Adamavičienė, A.; Romaneckas, K.; Lekavičienė, K.; Rimkuvienė, D.; Naujokienė, V. The effect of different biopreparations on soil physical properties and CO2 emissions when growing winter wheat and oilseed rape. SOIL 2023, 9, 593–608. [Google Scholar] [CrossRef]
- Toader, E.V.; Toader, G.; Trifan, D.; Lungu, E.; Ghiorghe, A.I. Innovative Ecological Technologies for Soil Restoration: Bacterial Biopreparations. In Proceedings of the International Conference Competitiveness of Agro-Food and Environmental Economy, Bucharest, Romania, 18 October 2022. [Google Scholar] [CrossRef]
- Khomenko, T.; Tonkha, O.; Hordiienko, L.; Pikovska, O. Impact of biopreparations on the phytopathological state of potato plants. Plant Soil Sci. 2024, 15, 20–29. [Google Scholar] [CrossRef]
- European Commission COM(2020)380. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl8tqb8jwtyy (accessed on 14 July 2024).
- European Commission COM(2020)381. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl8tofp7dtuc (accessed on 14 July 2024).
- Akter, T.; Shah, S.T.; Mamun, M.A.A.; Bari, M.L.; Begum, S.; Rahman, N.; Miah, M.I. Costeffective formulation of bio-fertilizer using agricultural residues as carriers and determination of shelflife of bio-fertilizer inoculants. Dhaka Univ. J. Biol. Sci. 2023, 32, 189–199. [Google Scholar] [CrossRef]
- Thirumal, G. Effects of Irradiated Carriers, Storage Temperatures, on Rhizobium Bioinoculant at Different Intervals. Int. J. Pure Appl. Biosci. 2017, 5, 1240–1246. [Google Scholar] [CrossRef]
- Thirumal, G. Evaluate the Shelf Life of Irradiated Carrier Based Pseudomonas Biofertilizer Stored at Different Temperatures at Different Intervals. Int. J. Pure Appl. Biosci. 2017, 5, 2158–2164. [Google Scholar] [CrossRef]
- Tian, Z.; Hou, L.; Hu, M.; Gao, Y.; Li, D.; Fan, B.; Wang, F.; Li, S. Optimization of Sporulation Conditions for Bacillus subtilis BSNK-5. Processes 2022, 10, 1133. [Google Scholar] [CrossRef]
- Kamoun, F.; Weekers, F.; Ayed, R.B.; Mechri, S.; Jabeur, F.; Thonart, P.; Jaouadi, B. Multiple linear regression models to simulate spore yields of Bacillus amyloliquefaciens BS13 through optimization of medium composition. Biotechnol. Appl. Biochem. 2022, 69, 2686–2697. [Google Scholar] [CrossRef] [PubMed]
- Poymanov, V.V.; Nazarov, S.A.; Toroptsev, V.V.; Ustinov, N.Y.; Kozyrenko, E.V.; Krylov, K.V. Study of freeze-drying process of bacterial concentrates in the apparatus using thermoelectric modules. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 072027. [Google Scholar] [CrossRef]
- Niwińska, A. Przegląd metod kriokonserwacji pod kątem techniki witrifikacyjnej. Życie Weter. 2016, 91, 505–507. [Google Scholar]
- Li, X.M.; Che, L.H.; Wu, Y.; Li, C.; Xu, B.C. An effective strategy for improving the freeze-drying survival rate of Lactobacillus curvatus and its potential protective mechanism. Food Biosci. 2024, 58, 103794. [Google Scholar] [CrossRef]
- Bogdan-Golubi, N.; Slanina, V. The viability of bacillus, pseudomonas and lactic acid bacteria strains after 15 years of storage. In Proceedings of the 5th International Scientific Conference on Microbial Biotechnology, Chisinau, Moldova, 12–13 October 2022; Institute of Microbiology and Biotechnology: Chisinau, Moldova, 2022. [Google Scholar] [CrossRef]
- Farfan Pajuelo, D.G.; Carpio Mamani, M.; Maraza Choque, G.J.; Chachaque Callo, D.M.; Cáceda Quiroz, C.J. Effect of Lyoprotective Agents on the Preservation of Survival of a Bacillus cereus Strain PBG in the Freeze-Drying Process. Microorganisms 2023, 11, 2705. [Google Scholar] [CrossRef]
- Donthi, M.R.; Butreddy, A.; Saha, R.N.; Kesharwani, P.; Dubey, S.K. Leveraging spray drying technique for advancing biologic product development—A mini review. Health Sci. Rev. 2024, 10, 100142. [Google Scholar] [CrossRef]
- Kakuda, L.; Jaramillo, Y.; Niño-Arias, F.C.; Souza, M.F.; Conceição, E.C.; Alves, V.F.; Almeida, O.G.G.; De Martinis, E.C.P.; Oliveira, W.P. Process Development for the Spray-Drying of Probiotic Bacteria and Evaluation of the Product Quality. J. Vis. Exp. 2023, 194, e65192. [Google Scholar] [CrossRef]
- Rowińska, P.; Sypka, M.; Białkowska, A.M.; Stryjek, M.; Nowak, A.; Janas, R.; Gutarowska, B.; Szulc, J. Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications. Appl. Sci. 2025, 15, 6400. [Google Scholar] [CrossRef]
- Sahai, P.; Chandra, R. Shelf life of liquid and carrier based Mesorhizobium sp. and Pseudomonas sp. inoculants under different storage conditions. J. Food Legumes 2009, 22, 280–282. [Google Scholar] [CrossRef]
- Goswami, G.; Panda, D.; Samanta, R.; Boro, R.C.; Modi, M.K.; Bujarbaruah, K.M.; Barooah, M. Bacillus megaterium adapts to acid stress condition through a network of genes: Insight from a genome-wide transcriptome analysis. Sci. Rep. 2018, 8, 16105. [Google Scholar] [CrossRef]
- Petrackova, D.; Vecer, J.; Svobodova, J.; Herman, P. Long-Term Adaptation of Bacillus subtilis 168 to Extreme pH Affects Chemical and Physical Properties of the Cellular Membrane. J. Membr. Biol. 2010, 233, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Eldeeb, M.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. An Interfacial Label-Free Electrochemical Approach to in-Situ Soil pH Monitoring. ECS Meet. Abstr. 2022, MA2022-02, 2275. [Google Scholar] [CrossRef]
- Sinnelä, M.T.; Park, Y.K.; Lee, J.H.; Jeong, K.C.; Kim, Y.W.; Hwang, H.J.; Mah, J.H. Effects of Calcium and Manganese on Sporulation of Bacillus Species Involved in Food Poisoning and Spoilage. Foods 2019, 8, 119. [Google Scholar] [CrossRef]
- Tian, J.; Wu, Y.; Li, C.; Zhou, Y.; Zhou, Z.; Gu, S. Effect of CaCO3 on Sporulation of Bacillus coagulans CGMCC 9951. Food Sci. 2020, 41, 113–119. [Google Scholar] [CrossRef]
- Domínguez, D.C. Calcium Signaling in Prokaryotes. In Calcium and Signal Transduction; InTech: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Tkachenko, O.; Kozak, N.; Bilan, M.; Hlebeniuk, V.; Alekseeva, N.; Kovaleva, L.; Nedosekov, V.; Galatiuk, O. The Effect of Long-Term Storage on Mycobacterium bovis. Pol. J. Microbiol. 2021, 70, 327–337. [Google Scholar] [CrossRef]
- Somova, L.M.; Timchenko, N.F.; Lyapun, I.N.; Drobot, E.I.; Matosova, E.V.; Bynina, M.P. Ultrastructural Changes of Bacteria in Static Cultures of Yersinia pseudotuberculosis under Long Storage under Conditions of Low Temperature. Bull. Exp. Biol. Med. 2020, 170, 223–225. [Google Scholar] [CrossRef]
- Ratib, N.R.; Seidl, F.; Ehrenreich, I.M.; Finkel, S.E. Evolution in Long-Term Stationary-Phase Batch Culture: Emergence of Divergent Escherichia coli Lineages over 1200 Days. MBio 2021, 12, e03337-20. [Google Scholar] [CrossRef]
- Borowski, S.; Matusiak, K.; Powałowski, S.; Pielech-Przybylska, K.; Makowski, K.; Nowak, A.; Rosowski, M.; Komorowski, P.; Gutarowska, B. A novel microbial-mineral preparation for the removal of offensive odors from poultry manure. Int. Biodeterior. Biodegrad. 2017, 119, 299–308. [Google Scholar] [CrossRef]
- Boontun, C.; Vatanyoopaisarn, S.; Phalakornkule, C.; Domrongpokkaphan, V.; Thitisak, P.; Thaveetheptaikul, P.; Bamrungchue, N. Influence of protectant for encapsulation by freeze-drying and spray-drying techniques, and packaging environments on the stability of the probiotic Bifidobacterium animalis subsp. lactis strain KMP-H9-01 during storage. Dry. Technol. 2024, 42, 762–774. [Google Scholar] [CrossRef]
- Kavak, A.E.; Zent, İ.; Özdemir, A.; Dertli, E. Optimization of cryoprotectant formulation to enhance the viability of Lactiplantibacillus plantarum NBC99 isolated from human origin. Prep. Biochem. Biotechnol. 2024, 54, 958–966. [Google Scholar] [CrossRef]
- Camisasca, G.; De Marzio, M.; Gallo, P. Effect of trehalose on protein cryoprotection: Insights into the mechanism of slowing down of hydration water. J. Chem. Phys. 2020, 153, 224503. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, X.; Liu, F.; Xie, J.; Zhu, Q.; Tan, S. Trehalose in Biomedical Cryopreservation–Properties, Mechanisms, Delivery Methods, Applications, Benefits, and Problems. ACS Biomater. Sci. Eng. 2023, 9, 1190–1204. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.F.; Zhang, M.; Sun, Y.; Bhandari, B.; Fan, D. Effects of cryoprotectants on Nostoc sphaeroides superchilled at low temperature (−3.0 °C) and their action mechanisms. J. Food Process Eng. 2020, 43, e13488. [Google Scholar] [CrossRef]
- Di, L.; Ma, W.; Kang, W.; Huang, Y.; Wu, Z.; Yin, B.; Yang, R.; Liu, X.; Pan, L.; Wang, J.; et al. Synergistic combination of cryoprotectants for high freeze-dried survival rate and viable cell counts of Streptococcus thermophilus. Dry. Technol. 2023, 41, 1444–1453. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Kang, W.; Han, Y.; Yin, B.; Yang, R.; Tang, R.; Pan, L.; Wang, J.; Li, W.; et al. Synergistic combination of cryoprotectants improved freeze-dried survival rate and viable counts of Lactiplantibacillus plantarum. Int. J. Dairy Technol. 2024, 77, 348–357. [Google Scholar] [CrossRef]
- Mahidsanan, T.; Gasaluck, P.; Eumkeb, G. A novel soybean flour as a cryoprotectant in freeze-dried Bacillus subtilis SB-MYP-1. LWT 2017, 77, 152–159. [Google Scholar] [CrossRef]
- Phoane, K.V.; Tjoa, E.; Joon, S.; Karmawan, L.U.; Moehario, L.H. Effect of Temperature and Preservation Period on the Viability of Lyophilized Bacillus subtilis. Indo Glob. J. Pharm. Sci. 2022, 12, 153–155. [Google Scholar] [CrossRef]
- Morgan, C.; Vesey, G. Freeze-Drying of Microorganisms. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 162–173. [Google Scholar] [CrossRef]
- Yánez-Mendizabal, V.; Viñas, I.; Usall, J.; Cañamás, T.; Teixidó, N. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnol. Lett. 2012, 34, 729–735. [Google Scholar] [CrossRef]
- Hebishy, E.; Yerlikaya, O.; Mahony, J.; Akpinar, A.; Saygili, D. Microbiological aspects and challenges of whey powders—I thermoduric, thermophilic and spore-forming bacteria. Int. J. Dairy Technol. 2023, 76, 779–800. [Google Scholar] [CrossRef]
- She, R.C.; Petti, C.A. Procedures for the Storage of Microorganisms. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 161–168. [Google Scholar] [CrossRef]
- Shin, M.S.; Hong, S.B. Maintenance of Filamentous Fungi in Korean Agricultural Culture Collection (KACC). Korean J. Mycol. 2014, 42, 97–103. [Google Scholar] [CrossRef]
- Peiren, J.; Buyse, J.; De Vos, P.; Lang, E.; Clermont, D.; Hamon, S.; Bégaud, E.; Bizet, C.; Pascual, J.; Ruvira, M.A.; et al. Improving survival and storage stability of bacteria recalcitrant to freeze-drying: A coordinated study by European culture collections. Appl. Microbiol. Biotechnol. 2015, 99, 3559–3571. [Google Scholar] [CrossRef]
- Hanidah, I.I.; Kirana, A.I.; Nurhadi, B.; Sumanti, D.M. The Functionality of Probiotic Bacteria Microencapsulation by Spray Drying: A Literature Review. Ind. J. Teknol. Dan Manaj. Agroind. 2021, 10, 274–282. [Google Scholar] [CrossRef]
- Moreira, M.T.C.; Martins, E.; Perrone, Í.T.; de Freitas, R.; Queiroz, L.S.; de Carvalho, A.F. Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3267–3283. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, K.; Chrungoo, N.K.; Joshi, S.R. Cryopreservation Design for Bacterial Cell: A Non-Conventional Gizmatic Approach. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 811–820. [Google Scholar] [CrossRef]
- Gorman, R.; Adley, C.C. An evaluation of five preservation techniques and conventional freezing temperatures of −20 °C and −85 °C for long-term preservation of Campylobacter jejuni. Lett. Appl. Microbiol. 2004, 38, 306–310. [Google Scholar] [CrossRef]
- Sunarno; Nursofiah, S.; Hartoyo, Y.; Amalia, N.; Febrianti, T.; Febriyana, D.; Saraswati, R.D.; Puspandari, N.; Sariadji, K.; Khariri; et al. Long-term Storage of Bacterial Isolates by Using Tryptic Soy Broth with 15% Glycerol in The Deep Freezer (−70 to −80 °C). IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012070. [Google Scholar] [CrossRef]
- Susilawati, L.; Purnomo, E.S. Viabilitas Sel Bakteri Dengan Cryoprotectant Agents Berbeda (Sebagai Acuan Dalam Preservasi Culture Collection di Laboratorium Mikrobiologi). Biog. J. Ilm. Biol. 2016, 4, 34–40. [Google Scholar] [CrossRef]
- Hoffmann, T.; Bremer, E. Protection of Bacillus subtilis against Cold Stress via Compatible-Solute Acquisition. J. Bacteriol. 2011, 193, 1552–1562. [Google Scholar] [CrossRef]
- Hancocks, N.H.; Thomas, C.R.; Stocks, S.M.; Hewitt, C.J. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations. Biotechnol. Lett. 2010, 32, 1405–1412. [Google Scholar] [CrossRef]
- Rego, A.V.P.L.M.; Silva, M.S.; Conceição, R.S.; Machado, B.A.S. Four Different Cryoprotectors in Preservation of Staphylococcus aureus. J. Bioeng. Technol. Health 2023, 6, 121–123. [Google Scholar] [CrossRef]
- Tedeschi, R.; De Paoli, P. Collection and Preservation of Frozen Microorganisms. In Methods in Molecular Biology; Springer: Totowa, NJ, USA, 2011; Volume 675, pp. 313–326. [Google Scholar] [CrossRef]
- Łukaszewska-Skrzypniak, N.; Sadowska, K.; Stępniewska-Jarosz, S.; Zenelt, W.; Borodynko-Filas, N. The review of fungi and omycota long-term storage methods. Prog. Plant Prot. 2022, 62, 181–189. [Google Scholar] [CrossRef]
- Li, C.; Zhao, K.; Ma, L.; Zhao, J.; Zhao, Z.M. Effects of drying strategies on sporulation and titer of microbial ecological agents with Bacillus subtilis. Front. Nutr. 2022, 9, 1025248. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowińska, P.; Gutarowska, B.; Wasilewska, M.; Powałowski, S.; Szulc, J. Physicochemical Determinants of Storage Stability in Spore-Based Bacterial Biopreparations for Agricultural Use. Appl. Sci. 2025, 15, 11856. https://doi.org/10.3390/app152211856
Rowińska P, Gutarowska B, Wasilewska M, Powałowski S, Szulc J. Physicochemical Determinants of Storage Stability in Spore-Based Bacterial Biopreparations for Agricultural Use. Applied Sciences. 2025; 15(22):11856. https://doi.org/10.3390/app152211856
Chicago/Turabian StyleRowińska, Patrycja, Beata Gutarowska, Marta Wasilewska, Szymon Powałowski, and Justyna Szulc. 2025. "Physicochemical Determinants of Storage Stability in Spore-Based Bacterial Biopreparations for Agricultural Use" Applied Sciences 15, no. 22: 11856. https://doi.org/10.3390/app152211856
APA StyleRowińska, P., Gutarowska, B., Wasilewska, M., Powałowski, S., & Szulc, J. (2025). Physicochemical Determinants of Storage Stability in Spore-Based Bacterial Biopreparations for Agricultural Use. Applied Sciences, 15(22), 11856. https://doi.org/10.3390/app152211856

