Fractal Characterization of Permeability Evolution in Fractured Coal Under Mining-Induced Stress Conditions
Abstract
1. Introduction
2. Fractal Description of Permeability-Enhanced Rate Model
2.1. The Fracture Media Is Assumed to Be Composed of a Number of Parallel Plates
2.2. The Fracture Media Is Assumed to Be Composed of a Number of Capillaries
3. Preparation of Fractured Coal Samples
4. Gas Flow Test and Results
4.1. Gas Flow Testing System
4.2. Testing Scheme
4.3. Testing Results
5. Permeability-Enhanced Rate Evolution of Fractured Coal Samples
6. Discussion
6.1. Klinkenberg Effect of Coal Under the Effect of CH4 Pressure Release
6.2. Impact Mechanism of the λmin/λmax for the New Fractal Permeability-Enhanced Rate Model
6.3. Evolution Mechanism of Permeability Enhancement of Fractured Coal Under Different Fracture Aperture Ratio λmin/λmax
7. Conclusions and Remarks
- A fractal model for the permeability-enhanced rate is developed, incorporating the fractal dimensions of both fracture aperture size distribution and flow path tortuosity. These dimensions are determined from volumetric strain and the ratio between minimum and maximum fracture apertures, providing an indirect characterization of the evolving complexity of the fracture network under mechanical loading.
- Experimental results indicate that the onset of permeability enhancement in fractured coal occurs primarily during the stage of gas release simulation. The combined influence of mining-induced stress relief and gas desorption significantly accelerates the permeability growth rate, confirming the strong coupling between mechanical disturbance and gas flow behavior.
- Based on the Tablet fluid model and capillary flow model, the new proposed fractal permeability-enhanced rate model of fractured coal can well reflect the permeability enhancement behavior of fractured coal under the superimposed conditions of mining pressure relief and gas release effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Xu, G.; Liang, Y.; Hu, G.; Chang, P. Improving coal permeability using microwave heating technology—A review. Fuel 2020, 266, 117022. [Google Scholar] [CrossRef]
- Fan, D.; Ettehadtavakkol, A.; Wang, W. Apparent liquid permeability in mixed-wet shale permeable media. Transp. Porous Media 2020, 134, 651–677. [Google Scholar] [CrossRef]
- Li, M.H.; Zhang, B.H.; Wu, Z.Q.; Luo, S.C.; Lu, J.; Zhang, D.M.; Xie, H.P. A novel permeability calculation model to simultaneously quantify the impacts of pore and fracture with full feature size. Int. J. Min. Sci. Technol. 2025, 35, 609–618. [Google Scholar] [CrossRef]
- Gao, M.; Xie, J.; Gao, Y.; Wang, W.; Li, C.; Yang, B.; Liu, J.; Xie, H. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing. Int. J. Min. Sci. Technol. 2021, 31, 825–841. [Google Scholar] [CrossRef]
- Xie, J.; Gao, M.; Zhang, R.; Liu, J.; Lu, T.; Wang, M. Gas flow characteristics of coal samples with different levels of fracture network complexity under triaxial loading and unloading conditions. J. Pet. Sci. Eng. 2020, 195, 107606. [Google Scholar] [CrossRef]
- Xie, J.; Gao, M.; Liu, J.; Li, C.; Peng, G. Permeability-enhanced rate model for coal permeability evolution and its application under various triaxial stress conditions. Arab. J. Geosci 2020, 13, 106–116. [Google Scholar] [CrossRef]
- Huo, J.; Meguid, M.A. Systematic investigation of stress-induced fracture closure and permeability evolution in Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. 2025, 191, 106113. [Google Scholar] [CrossRef]
- Tomassi, A.; de Franco, R.; Trippetta, F. High-resolution synthetic seismic modelling: Elucidating facies heterogeneity in carbonate ramp systems. Pet. Geosci. 2025, 31, petgeo2024-047. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, F.; Liu, X.; Li, J.; Liang, M.; Li, X. Theoretical and numerical simulation of the mining-enhanced permeability model of damaged coal seam. Geotech. Geol. Eng. 2016, 34, 1425–1433. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Mallik, J.; Suman, S.; Dhar, R.; Shaik, N.A.; Vedanti, N. Field scale coal permeability modeling and sweet-spotting using seismic attributes. Int. J. Coal Sci. Technol. 2025, 12, 89. [Google Scholar] [CrossRef]
- Jiao, H.Z.; Chen, X.; Zhang, T.G.; Michael, Q.; Yang, Y.X.; Yang, X.L.; Yang, T.Y. In situ loading of a pore network model for quantitative characterization and visualization of gas seepage in coal rocks. Deep Undergr. Sci. Eng. 2025, 4, 437–451. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Ren, Z.; Wang, F. Compaction and seepage characteristics of broken coal and rock masses in coal mining: A review in laboratory tests. Rock Mech. Bull. 2024, 3, 100102. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Liu, K.; Zhao, X.; Li, H.; Cao, J.; Zhang, S.; Ma, K. Analysis of coal mine safety accident features in China, 2017–2022. Geohazard Mech. 2024, 2, 108–120. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Zheltov, I.P.; Kochina, I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 1960, 24, 1286–1303. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Yang, J.Y.; Wang, B.; Liu, T. Fractal analysis of CT images of tight sandstone with anisotropy and permeability prediction. J. Pet. Sci. Eng. 2021, 205, 108919. [Google Scholar] [CrossRef]
- Yang, B.B.; Liu, Y. Application of Fractals to Evaluate Fractures of Rock Due to Mining. Fractal Fract. 2022, 6, 96. [Google Scholar] [CrossRef]
- Yu, B.M.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993. [Google Scholar] [CrossRef]
- Hao, L.; Cheng, P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. J. Power Sources 2009, 186, 104–114. [Google Scholar] [CrossRef]
- Miao, T.; Chen, A.; Xu, Y.; Cheng, S.; Yu, B. A fractal permeability model for porous-fracture media with the transfer of fluids from porous matrix to fracture. Fractals 2019, 27, 1950121. [Google Scholar] [CrossRef]
- Wu, T.; Wang, S. A fractal permeability model for real gas in shale reservoirs coupled with knudsen diffusion and surface diffusion effects. Fractals 2020, 28, 2050017. [Google Scholar] [CrossRef]
- Dong, S.; Xu, L.; Dai, Z.; Xu, B.; Yu, Q.; Yin, S.; Zhang, X.; Zhang, C.; Zang, X.; Zhou, X.; et al. A novel fractal model for estimating permeability in low-permeable sandstone reservoirs. Fractals 2020, 28, 204005. [Google Scholar] [CrossRef]
- Xie, J.; Gao, M.; Zhang, R.; Ren, L.; Peng, G.; Ai, T.; Yang, B. Experimental investigation on the gas flow characteristics of coal samples with different fracture network complexities. J. Nat. Gas Sci. Eng. 2020, 82, 103487. [Google Scholar] [CrossRef]
- Xie, H.; Xie, J.; Gao, M.; Zhang, R.; Zhou, H.; Gao, F.; Zhang, Z. Theoretical and experimental validation of mining-enhanced permeability for simultaneous exploitation of coal and gas. Environ. Earth Sci. 2015, 73, 5951–5962. [Google Scholar] [CrossRef]
- Hgab, C.; Htab, C.; Ywab, C.; Kai, W.; Chao, X. Gas seepage in underground coal seams: Application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements. Fuel 2020, 288, 119641. [Google Scholar]
- Wei, M.; Liu, J.; Elsworth, D.; Liu, Y.; He, Z. Impact of equilibration time lag between matrix and fractures on the evolution of coal permeability. Fuel 2021, 290, 120029. [Google Scholar] [CrossRef]
- Yu, B.M.; Lee, L.J. A fractal in-plane permeability model for fabrics. Polym. Compos. 2002, 23, 201–221. [Google Scholar] [CrossRef]
- Kong, X. Advanced Seepage Mechanics; Press of University of Science and Technology of China: Hefei, China, 2010. [Google Scholar]
- Xie, H.; Gao, F.; Zhou, H.; Cheng, H.; Zhou, F. On theoretical and modeling approach to mining-enhanced permeability for simultaneous exploitation of coal and gas. J. China Coal Soc. 2013, 38, 1101–1108. [Google Scholar]
- Yu, B.M.; Li, J.H. Some fractal characters of porous media. Fractals 2001, 9, 365–372. [Google Scholar] [CrossRef]
- Yu, B. Analysis of flow in fractal porous media. Appl. Mech. Rev. 2008, 61, 1239–1249. [Google Scholar] [CrossRef]
- Xu, P.; Yu, B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 2008, 31, 74–81. [Google Scholar] [CrossRef]
- Comiti, J.; Renaud, M. A new model for determining mean structure parameters of fixed beds from pressure drop measurements: Application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 1989, 44, 1539–1545. [Google Scholar] [CrossRef]
- Xie, H. Fractals in Rock Mechanics; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Zhang, Z.; Zhang, R.; Xie, H.; Gao, M.; Xie, J. Mining-Induced Coal Permeability Change Under Different Mining Layouts. Rock Mech. Rock Eng. 2016, 49, 3753–3768. [Google Scholar] [CrossRef]
- Wojnarowski, P.; Czarnota, R.; Janiga, D.; Stopa, J. Novel liquid-gas corrected permeability correlation for dolomite formation. Int. J. Rock Mech. Min. Sci. 2018, 112, 11–15. [Google Scholar] [CrossRef]
- Li, Z.; Ripepi, N.; Chen, C. Using pressure pulse decay experiments and a novel multi-physics shale transport model to study the role of Klinkenberg effect and effective stress on the apparent permeability of shales. J. Pet. Sci. Eng. 2020, 189, 107010. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.F.; Huang, G.; Wang, J.; Geng, W.L. On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking. Appl. Sci. 2025, 15, 7167. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zhu, Z.; Xie, J.; Gao, M.; Liu, M.; Qu, S.; Nie, S.; Ren, L. Fractal Characterization of Permeability Evolution in Fractured Coal Under Mining-Induced Stress Conditions. Appl. Sci. 2025, 15, 11794. https://doi.org/10.3390/app152111794
Du Y, Zhu Z, Xie J, Gao M, Liu M, Qu S, Nie S, Ren L. Fractal Characterization of Permeability Evolution in Fractured Coal Under Mining-Induced Stress Conditions. Applied Sciences. 2025; 15(21):11794. https://doi.org/10.3390/app152111794
Chicago/Turabian StyleDu, Yuze, Zeyu Zhu, Jing Xie, Mingzhong Gao, Mingxin Liu, Shuang Qu, Shengjin Nie, and Li Ren. 2025. "Fractal Characterization of Permeability Evolution in Fractured Coal Under Mining-Induced Stress Conditions" Applied Sciences 15, no. 21: 11794. https://doi.org/10.3390/app152111794
APA StyleDu, Y., Zhu, Z., Xie, J., Gao, M., Liu, M., Qu, S., Nie, S., & Ren, L. (2025). Fractal Characterization of Permeability Evolution in Fractured Coal Under Mining-Induced Stress Conditions. Applied Sciences, 15(21), 11794. https://doi.org/10.3390/app152111794

