Geochemical Characteristics and Provenance Tracing of Surface Sediments in a Typical Agropastoral Ecotone: A Case Study from Kangbao Region, Northern China
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Testing
3.2. Provenance Analysis Methods
4. Results
4.1. Geochemical Elemental Characteristics
4.2. Characteristics of Chemical Weathering
4.3. Provenance Analysis
4.3.1. Elemental Comparative Analysis
4.3.2. Multivariate Statistical Analysis

5. Discussion
5.1. Dominance of Bedrock Provenance and Its Geomorphic Modification
5.2. Interpretation of Sediment Modification Processes
5.3. Implications for Desertification Control in Agro-Pastoral Ecotones
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Cu | Pb | Zn | Cr | Ni | Co | Rb | Sr | Ba | V | Nb | Zr | Ce | Nd | Y | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gully depressions | Max | 21.60 | 22.60 | 32.20 | 45.40 | 24.00 | 6.96 | 128.00 | 243.00 | 652.00 | 49.30 | 12.90 | 199.00 | 46.50 | 22.80 | 18.80 |
| Min | 11.80 | 15.90 | 21.00 | 27.90 | 16.20 | 4.19 | 59.30 | 119.00 | 342.00 | 31.20 | 5.72 | 153.16 | 24.30 | 11.70 | 11.00 | |
| Mean | 16.26 | 18.73 | 28.12 | 38.51 | 20.28 | 5.79 | 93.02 | 172.39 | 504.36 | 41.32 | 8.49 | 183.18 | 34.13 | 16.62 | 14.34 | |
| CV | 0.19 | 0.12 | 0.13 | 0.15 | 0.13 | 0.15 | 0.18 | 0.21 | 0.16 | 0.14 | 0.22 | 0.08 | 0.19 | 0.19 | 0.16 | |
| Low mountains-hills | Max | 27.00 | 31.90 | 53.90 | 64.80 | 32.00 | 10.70 | 194.00 | 232.00 | 853.00 | 82.10 | 20.80 | 262.87 | 100.00 | 33.40 | 28.40 |
| Min | 8.92 | 15.80 | 17.40 | 19.30 | 12.10 | 3.22 | 90.70 | 163.00 | 547.00 | 25.50 | 4.96 | 110.65 | 26.20 | 10.00 | 8.32 | |
| Mean | 17.98 | 21.92 | 36.01 | 43.08 | 21.14 | 7.22 | 122.31 | 191.64 | 684.5 | 53.1 | 10.76 | 196.35 | 57.23 | 21.6 | 17.97 | |
| CV | 0.27 | 0.19 | 0.27 | 0.26 | 0.25 | 0.27 | 0.21 | 0.11 | 0.12 | 0.23 | 0.30 | 0.17 | 0.27 | 0.24 | 0.24 | |
| Gently sloping hills | Max | 24.70 | 23.40 | 76.60 | 55.60 | 29.60 | 9.63 | 112.00 | 213.00 | 814.00 | 70.30 | 9.68 | 239.00 | 58.10 | 22.40 | 18.90 |
| Min | 11.00 | 16.70 | 18.70 | 27.00 | 15.30 | 4.38 | 99.50 | 170.00 | 412.00 | 36.00 | 6.26 | 159.98 | 31.80 | 12.20 | 9.92 | |
| Mean | 17.26 | 19.45 | 34.76 | 41.09 | 20.83 | 6.98 | 105.23 | 190.09 | 594.73 | 51.46 | 8.21 | 199.41 | 48.09 | 18.64 | 14.86 | |
| CV | 0.25 | 0.11 | 0.45 | 0.24 | 0.21 | 0.24 | 0.04 | 0.08 | 0.23 | 0.22 | 0.13 | 0.12 | 0.16 | 0.15 | 0.17 | |
| Undulating plains | Max | 33.90 | 27.30 | 68.00 | 73.60 | 31.90 | 13.80 | 144.00 | 279.00 | 717.00 | 97.60 | 15.70 | 289.74 | 83.20 | 32.60 | 26.60 |
| Min | 12.80 | 17.90 | 24.30 | 27.60 | 11.90 | 4.44 | 102.00 | 184.00 | 494.00 | 35.90 | 6.43 | 139.24 | 39.70 | 15.90 | 13.70 | |
| Mean | 17.66 | 20.00 | 33.88 | 40.26 | 17.86 | 6.97 | 111.46 | 236.27 | 582.64 | 51.67 | 9.23 | 207.61 | 55.49 | 22.24 | 16.88 | |
| CV | 0.33 | 0.14 | 0.37 | 0.32 | 0.30 | 0.36 | 0.12 | 0.13 | 0.14 | 0.33 | 0.29 | 0.20 | 0.22 | 0.21 | 0.23 | |
| Granite samples | Max | 34.00 | 82.50 | 61.40 | 12.70 | 13.00 | 5.55 | 160.00 | 495.00 | 983.40 | 23.60 | 23.80 | 266.90 | 41.76 | 41.76 | 22.10 |
| Min | 11.60 | 21.10 | 24.60 | 5.80 | 2.90 | 1.02 | 110.85 | 153.50 | 579.30 | 8.10 | 14.90 | 98.87 | 24.20 | 9.86 | 12.90 | |
| Mean | 19.50 | 44.87 | 49.10 | 8.33 | 6.56 | 3.65 | 139.28 | 317.26 | 719.56 | 14.80 | 18.00 | 196.05 | 33.94 | 29.16 | 18.99 | |
| CV | 0.64 | 0.73 | 0.43 | 0.45 | 0.85 | 0.64 | 0.18 | 0.54 | 0.31 | 0.53 | 0.27 | 0.44 | 0.26 | 0.58 | 0.27 | |
| Monzonitic leptite sample | 8.25 | 38.10 | 44.20 | 7.82 | 9.14 | 2.23 | 273.00 | 146.00 | 569.00 | 10.40 | 34.30 | 180.14 | 168.00 | 57.10 | 38.50 | |
| Andesitic tuff sample | 23.30 | 33.10 | 47.20 | 108.00 | 40.80 | 19.10 | 54.80 | 171.00 | 247.00 | 69.80 | 19.58 | 183.82 | 46.50 | 21.40 | 15.20 | |
| Sandstone sample | 5.78 | 36.20 | 25.50 | 6.96 | 8.90 | 1.05 | 102.00 | 93.80 | 282.70 | 4.86 | 52.50 | 135.85 | 47.10 | 16.20 | 20.10 | |
| Quartzite sample | 6.31 | 1.99 | 5.77 | 13.8 | 10.5 | 1.06 | 2.94 | 7.36 | 23.6 | 6.96 | 3.42 | 31.69 | 16.10 | 5.10 | 4.15 | |
| Tuff sample | 19.00 | 37.40 | 56.80 | 15.60 | 15.10 | 1.54 | 220.00 | 206.00 | 740.00 | 12.00 | 16.80 | 103.00 | 74.20 | 42.60 | 31.00 |
References
- Zan, G.S.; Wang, C.P.; Li, F.; Liu, Z.; Sun, T. Key Data Results and Trend Analysis of the Sixth National Survey on Desertification and Sandification. For. Grassl. Resour. Res. 2023, 1, 1–7. [Google Scholar]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Yuan, J.G.; Wang, W.; Long, L.M. Land Degradation and Ecological Reconstruction of Eco-fragile Region in Bashang of Hebei Province. J. Arid Land Resour. Environ. 2006, 20, 139–141. [Google Scholar]
- Xie, Y.Y.; Yuan, F.; Zhan, T.; Kang, C.G.; Chi, Y.P. Geochemical and isotopic characteristics of sediments for the Hulun Buir Sandy Land, northeast China: Implication for weathering, recycling and dust provenance. Catena 2018, 160, 170–184. [Google Scholar] [CrossRef]
- Li, Z.P.; Yue, L.P.; Xue, X.X.; Yang, L.R.; Nie, H.G. Characteristics of land desertifications of different origins on the southeastern margin of the Mu Us desert. Geol. Bull. China 2006, 25, 590–596. [Google Scholar]
- Wang, Z.L.; Wei, X.F.; Wei, H.; Li, X. The grain size characteristics of different sedimentary units and the effects of desertification in the Xiaoluan River Basin in Bashang, Hebei. Miner. Explor. 2021, 12, 1000–1007. [Google Scholar]
- Liu, Q.Q.; Yang, X.P. Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology 2018, 318, 354–374. [Google Scholar] [CrossRef]
- Cui, Y.C.; Cao, L.C.; Qiao, P.J.; Chen, S.H.; Pang, X.; Shao, L. Provenance Evolution of Paleogene Sequeence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Sci. 2018, 43, 4169–4179. [Google Scholar]
- Chen, J.; Li, G.J. Geochemical studies on the source region of Asian dust. Sci. China Earth Sci. 2011, 54, 1279–1301. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Hu, F.G.; Yang, X.P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China. Quat. Sci. Rev. 2016, 131, 179–192. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Numanami, N.; Takeshi, O.; Muga, Y. Principal component analysis for the elemental composition of sedimentary sands in the Hayakawa River of Hakone Caldera, Japan. Geochem. J. 2024, 58, 155–168. [Google Scholar] [CrossRef]
- Traore, A.; Mao, X.; Traore, A.; Yakubu, Y.; Sidibe, A.M. Multivariate Statistical Analysis of Dominating Groundwater Mineralization and Hydrochemical Evolution in Gao, Northern Mali. J. Earth Sci. 2024, 35, 1692–1703. [Google Scholar] [CrossRef]
- Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem. Geol. 2013, 341, 140–146. [Google Scholar] [CrossRef]
- Song, Y.G.; Chen, X.L.; Li, Y.; Fan, Y.F.; Collins, A.L. Quantifying the provenance of dune sediments in the Taklimakan Desert using machine learning, multidimensional scaling and sediment source fingerprinting. Catena 2022, 210, 105902. [Google Scholar] [CrossRef]
- Bai, Y.N.; Liu, H.W.; Ma, Z.; Jiang, W.J.; Miao, J.J.; Du, D. Characteristics of land desertification and its geological influencing factors in northern Kangbao County. N. China Geol. 2020, 3, 212–217. [Google Scholar]
- Wang, X.J.; Guan, X.Y.; Zhang, D.S.; Zhu, G.X.; Wang, D.Q.; Ban, C.Y. Geological Characters of the Cenozoic Red Beds in Zhangbei-Kangbao Region, Northwestern Hebei Province. Geol. Surv. Res. 2005, 28, 39–46. [Google Scholar]
- Pei, H.W.; Liu, M.Z.; Li, Y.L.; Li, H.J.; Xiao, Y.Y.; Yang, G.L. Impact of Ecological Restoration Measures on Ecosystem Services in Arid and Semi-arid Area. Res. Soil Water Conserv. 2022, 29, 192–199. [Google Scholar]
- Yang, Y.; Yang, Y.; Wu, Z.; Guo, C.; Sun, B.; Cheng, F. Studies on Wind Break and Sand Fixation Effects of Farmland Shelterbelt in Bashang Area of Northern Hebei. J. Northwest For. Univ. 2020, 35, 167–172. [Google Scholar]
- Yu, Y.; Wu, L.; Wang, N.; Wu, L.Y. Uncertainty evaluation of 15 Rare Earth Elements in rock by ICP-MS. N. China Geol. 2024, 47, 105–110. [Google Scholar]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2001, 2, 1021. [Google Scholar] [CrossRef]
- Madukwe, H.Y.; Obasi, R.A. Geochemistry, classification and maturity of the sandstone facies of the Abeokuta Formation, South Western Nigeria. Eur. J. Basic Appl. Sci. 2016, 3, 39–57. [Google Scholar]
- Sultana, S.; Rashid, S. Geochemistry and clay mineral studies of Jurassic sedimentary rocks from the Spiti region, Himachal Pradesh, North India. J. Indian Assoc. Sedimentol. 2022, 39, 17–29. [Google Scholar] [CrossRef]
- Dinis, P.; Garzanti, E.; Hahn, A.; Vermeesch, P.; Cabral-Pinto, M. Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Sci. Rev. 2020, 201, 103039. [Google Scholar] [CrossRef]
- Chang, C.; Beckford, H.O.; Ji, H. Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China. Sustainability 2022, 14, 4822. [Google Scholar] [CrossRef]
- Li, B.; Jin, X.; Dal Corso, J.; Ogg, J.G.; Lang, X.; Baranyi, V.; Preto, N.; Franceschi, M.; Qiao, P.; Shi, Z. Complex pattern of environmental changes and organic matter preservation in the NE Ordos lacustrine depositional system (China) during the T-OAE (Early Jurassic). Glob. Planet. Chang. 2023, 221, 104045. [Google Scholar] [CrossRef]
- Mueller, M.A.; Licht, A.; Möller, A.; Condit, C.B.; Fosdick, J.C.; Ocakoğlu, F.; Campbell, C. An expanded workflow for detrital rutile provenance studies: An application from the Neotethys Orogen in Anatolia. EGUsphere 2023, 1–44. [Google Scholar] [CrossRef]
- Patra, A.; Shukla, A.D. Geochemical signatures of Late Paleocene sandstones from the Sanu Formation, Jaisalmer basin, western India: Implication for provenance, weathering and tectonic setting. J. Earth Syst. Sci. 2020, 129, 81. [Google Scholar] [CrossRef]
- Aitchison, J.; Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C 2002, 51, 375–392. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Pan, K.J.; Zhang, C.X.; Liang, A.M. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China. Catena 2020, 190, 104483. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, X.K.; Yan, P. Spatial variability of the physicochemical characteristics of surface sediments in the “Three Rivers and One Dune” Region in the Kuye River Basin, Mu Us Sandy Land, China. Catena 2022, 210, 105943. [Google Scholar] [CrossRef]
- Thorn, C.E.; Darmody, R.G.; Dixon, J.C. The chemical weathering regime of Kärkevagge, arctic-alpine Sweden. Geomorphology 2001, 41, 37–52. [Google Scholar] [CrossRef]
- Chen, Q.J. The Spatial Distribution of Geochemical Composition of Eolian Sediments in the Alashan Desert and Its Environmental Sensitivity. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2023. [Google Scholar]
- Liu, L.; Xie, Y.Y.; Chi, Y.P.; Kang, C.G.; Wu, P.; Wei, Z.Y.; Zhang, Y.X.; Zhang, M. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance. Mar. Geol. Quat. Geol. 2021, 41, 192–206. [Google Scholar]
- Wang, K.; Zhai, S.K. Geochemical methods for identification of sedimentary provenance. Mar. Sci. 2020, 44, 132–143. [Google Scholar]
- Liu, Z.T. Provenance of Aeolian Sands and Sedimentary Environments in the Hunshandake Sand: Geochemical Evidence. Institute of Geology and Geophysics. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Zhang, Y.L. Physical and chemical properties and provenance analysis of surface sediments in in Gobi and Deserts of the Mongolian Plateau. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2020. [Google Scholar]
- Zhao, W.; Liu, L. Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source. Sci. Sin. 2019, 49, 1425–1438. [Google Scholar] [CrossRef]
- Liu, Z.T.; Yang, X.P. Geochemical-geomorphological Evidence for the Provenance of Aeolian Sands and Sedimentary Environments in the Hunshandake Sandy Land, Eastern Inner Mongolia, China. Acta Geol. Sin. 2013, 3, 243–256. [Google Scholar]
- Luo, W.Y.; Dong, Z.B.; Qian, G.Q.; Feng, Y.M.; Lu, J.F.; Wang, M.; Ren, X.B.; Li, J.Y. Geochemical Compositions of Surface Sediment from Gobi Desert in Northern China and Its Sedimentary Significance. J. Desert Res. 2014, 34, 1441–1453. [Google Scholar]
- Jia, Y.F.; Mao, L.J. The New Process of Geochemistry Studying of Rb and Sr of Loess. Chin. J. Soil Sci. 2010, 6, 1501–1504. [Google Scholar]
- Yang, D.D.; Liu, S.; Zhang, Z.S.; Zhao, Y.Y.; Yang, J.; Wei, T.H.; Zhang, G.L.; Sun, G.J.; Guo, X.Q. Geochemical Characteristics and Provenance Implications of Different Grain Size Sediments in Shenhu Area, Northern South China Sea. Period. Ocean Univ. China 2022, 52, 109–126. [Google Scholar]
- Xu, S.G.; Yang, S.; Hu, T.T.; Yang, T.Q.; Bai, M.Q. Geochemical Characteristics and Provenance Analysis of REE in Surface Sediments From Xining Section of Huangshui River. J. Chin. Soc. Rare Earths 2022, 40, 711–720. [Google Scholar]
- Pettke, T.; Lee, D.C.; Halliday, A.N.; Rea, D.K. Radiogenic Hf isotopic compositions of continental eolian dust from Asia, its variability and its implications for seawater Hf. Earth Planet. Sci. Lett. 2002, 202, 453–464. [Google Scholar] [CrossRef]
- Ni, H.; Bi, L.; Guo, Y.; He, Z.; Yang, S. Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary. Acta Sedimentol. Sin. 2023, 41, 243–255. [Google Scholar]
- Weltje, G.J.; Eynatten, H.V. Quantitative provenance analysis of sediments: Review and outlook. Sediment. Geol. 2004, 171, 1–11. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Stauch, G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth Sci. Rev. 2015, 150, 393–408. [Google Scholar] [CrossRef]
- Xiao, C.L.; Nie, H.F.; Liu, J.Y.; Yuan, G.L.; Kang, Y.H.; Wang, A.T.; Song, B.F. Ecological and geological interaction model: The coupling of supergene geological processes and ecological characteristics. Geol. Surv. China 2021, 8, 9–16. [Google Scholar]
- Liu, N.N.; Wang, H.B.; Zuo, H.J.; Xiong, X.; Wang, G.L. Geochemical Analysis of Different Particle Sizes on the Surface of Sand and Gravel. Environ. Sci. Technol. 2020, 43, 21–26. [Google Scholar]
- He, G.; Liu, H.Y. Vegetation Development and Aeolian Activities in Bashang Area of Hebei Province and Otindag Sandy Land of Inner Mongolia. Acta Sci. Nat. Univ. Pekin. 2004, 40, 669–675. [Google Scholar]
- Zhao, L.; Ma, L. The thoughts of Land Types Ecological Suitability and Ecological construction: A Case Study in Kangbao County. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2015, 36, 96–100. [Google Scholar]
- Li, P.; Kou, X.; Wang, Y.; Niu, L. Building a More Sustainable Chinese Loess Plateau. J. Earth Sci. 2024, 35, 283–287. [Google Scholar] [CrossRef]
- Sun, W.; Li, B.S. The relation between coupling among the principal components of desertification factors and desertification in rear hills of Bashang since 1950. Geogr. Res. 2002, 21, 391–398. [Google Scholar]
- Xia, M.T.; Ma, L. The Effect of Ecological Construction Projection for the Bashang Plateau on Soil Wind Erosing and Interannual Variability-Taking Kangbao Pasture in Zhangjiakou, Hebei Province for Example. J. Hebei Univ. (Nat. Sci. Ed.) 2015, 39, 268–272. [Google Scholar]







| SiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gully depressions | Max | 81.31 | 10.14 | 2.02 | 0.62 | 3.94 | 1.00 | 2.72 | 1.92 | 0.42 | 0.07 | 0.06 |
| Min | 73.31 | 8.60 | 1.32 | 0.44 | 0.83 | 0.59 | 2.43 | 1.50 | 0.31 | 0.04 | 0.04 | |
| Mean | 76.76 | 9.40 | 1.68 | 0.53 | 2.03 | 0.80 | 2.58 | 1.66 | 0.37 | 0.06 | 0.05 | |
| CV | 0.04 | 0.06 | 0.15 | 0.13 | 0.56 | 0.16 | 0.03 | 0.08 | 0.10 | 0.19 | 0.14 | |
| Low mountains-hills | Max | 82.25 | 13.22 | 3.56 | 1.06 | 3.57 | 1.21 | 3.23 | 2.23 | 0.54 | 0.12 | 0.08 |
| Min | 66.75 | 8.43 | 0.96 | 0.21 | 0.77 | 0.38 | 2.55 | 1.29 | 0.22 | 0.03 | 0.03 | |
| Mean | 74.15 | 10.65 | 2.09 | 0.57 | 1.61 | 0.86 | 2.79 | 1.73 | 0.43 | 0.07 | 0.06 | |
| CV | 0.06 | 0.13 | 0.28 | 0.33 | 0.42 | 0.23 | 0.07 | 0.11 | 0.18 | 0.32 | 0.24 | |
| Gently sloping hills | Max | 81.46 | 11.14 | 2.71 | 1.17 | 1.91 | 1.13 | 2.82 | 1.78 | 0.53 | 0.10 | 0.06 |
| Min | 70.72 | 8.51 | 1.12 | 0.45 | 0.87 | 0.48 | 2.56 | 1.41 | 0.29 | 0.04 | 0.03 | |
| Mean | 76.05 | 10.04 | 1.81 | 0.66 | 1.31 | 0.78 | 2.69 | 1.63 | 0.42 | 0.06 | 0.05 | |
| CV | 0.04 | 0.08 | 0.25 | 0.32 | 0.26 | 0.25 | 0.03 | 0.08 | 0.17 | 0.28 | 0.19 | |
| Undulating plains | Max | 78.65 | 13.76 | 4.29 | 0.83 | 4.24 | 1.81 | 2.96 | 2.14 | 0.67 | 0.14 | 0.08 |
| Min | 58.96 | 8.9 | 1.31 | 0.37 | 1.00 | 0.59 | 2.61 | 1.48 | 0.33 | 0.04 | 0.04 | |
| Mean | 73.15 | 10.51 | 1.90 | 0.62 | 2.35 | 0.92 | 2.74 | 1.69 | 0.44 | 0.07 | 0.05 | |
| CV | 0.08 | 0.12 | 0.44 | 0.24 | 0.53 | 0.40 | 0.04 | 0.12 | 0.24 | 0.43 | 0.24 | |
| Granite samples | Max | 73.46 | 15.39 | 0.46 | 2.87 | 2.40 | 0.88 | 5.00 | 4.33 | 0.38 | 0.09 | 0.06 |
| Min | 69.02 | 13.01 | 0.42 | 0.47 | 0.93 | 0.29 | 4.32 | 3.5 | 0.12 | 0.03 | 0.03 | |
| Mean | 71.60 | 14.40 | 0.44 | 1.70 | 1.46 | 0.50 | 4.57 | 3.84 | 0.24 | 0.05 | 0.04 | |
| CV | 0.03 | 0.09 | 0.05 | 0.71 | 0.56 | 0.65 | 0.08 | 0.11 | 0.55 | 0.69 | 0.30 | |
| Monzonitic leptite sample | 72.91 | 13.88 | 0.78 | 1.42 | 1.09 | 0.26 | 4.84 | 3.88 | 0.26 | 0.06 | 0.04 | |
| Andesitic tuff sample | 58.92 | 14.37 | 4.77 | 1.39 | 4.66 | 2.61 | 1.78 | 2.35 | 0.70 | 0.14 | 0.10 | |
| Sandstone sample | 72.99 | 14.95 | 0.53 | 0.12 | 0.40 | 0.10 | 5.43 | 4.36 | 0.09 | 0.01 | 0.01 | |
| Quartzite sample | 90.62 | 6.22 | 0.35 | 0.17 | 0.07 | 0.13 | 1.02 | 1.05 | 0.04 | 0.01 | 0.02 | |
| Tuff sample | 70.42 | 12.80 | 1.08 | 0.46 | 4.26 | 0.47 | 4.70 | 2.76 | 0.13 | 0.03 | 0.04 |
| PC1 | PC2 | PC3 | |
|---|---|---|---|
| SiO2/Al2O3 | 0.38083 | 0.04638 | −0.48195 |
| Na2O/K2O | 0.35903 | −0.19757 | 0.54569 |
| K2O/Al2O3 | 0.21292 | 0.58572 | 0.01236 |
| Na2O/Al2O3 | 0.42146 | 0.33115 | 0.38065 |
| Zr/Nb | 0.43855 | 0.00619 | −0.30757 |
| Ba/Sr | −0.08462 | 0.51091 | −0.26066 |
| Rb/Sr | −0.25942 | 0.48164 | 0.31522 |
| Nd/Y | −0.23055 | −0.01304 | 0.19953 |
| Cr/V | 0.42796 | −0.11345 | 0.15226 |
| Variance contribution rate | 32.0% | 21.4% | 15.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Liu, H.; Xu, D.; Li, Z.; Miao, J.; Xia, Y.; Yang, F.; Wang, N. Geochemical Characteristics and Provenance Tracing of Surface Sediments in a Typical Agropastoral Ecotone: A Case Study from Kangbao Region, Northern China. Appl. Sci. 2025, 15, 11785. https://doi.org/10.3390/app152111785
Bai Y, Liu H, Xu D, Li Z, Miao J, Xia Y, Yang F, Wang N. Geochemical Characteristics and Provenance Tracing of Surface Sediments in a Typical Agropastoral Ecotone: A Case Study from Kangbao Region, Northern China. Applied Sciences. 2025; 15(21):11785. https://doi.org/10.3390/app152111785
Chicago/Turabian StyleBai, Yaonan, Hongwei Liu, Danhong Xu, Zhuang Li, Jinjie Miao, Yubo Xia, Fengtian Yang, and Nan Wang. 2025. "Geochemical Characteristics and Provenance Tracing of Surface Sediments in a Typical Agropastoral Ecotone: A Case Study from Kangbao Region, Northern China" Applied Sciences 15, no. 21: 11785. https://doi.org/10.3390/app152111785
APA StyleBai, Y., Liu, H., Xu, D., Li, Z., Miao, J., Xia, Y., Yang, F., & Wang, N. (2025). Geochemical Characteristics and Provenance Tracing of Surface Sediments in a Typical Agropastoral Ecotone: A Case Study from Kangbao Region, Northern China. Applied Sciences, 15(21), 11785. https://doi.org/10.3390/app152111785

