Novel Thermal and Non-Thermal Technologies Towards Sustainability and Microbiological Food Safety and Quality
1. Introduction
2. Overview of Contributions
3. Conclusions
Funding
Conflicts of Interest
References
- Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean Label Alternatives in Meat Products. Foods 2021, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Ekonomou, S.I.; Boziaris, I.S. Fate of Osmotically Adapted and Biofilm Listeria Monocytogenes Cells after Exposure to Salt, Heat, and Liquid Smoke, Mimicking the Stresses Induced during the Processing of Hot Smoked Fish. Food Microbiol. 2024, 117, 104392. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Vicente, A.A. Environmental Impact of Novel Thermal and Non-Thermal Technologies in Food Processing. Food Res. Int. 2010, 43, 1936–1943. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Boziaris, I.S. Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Appl. Sci. 2021, 11, 833. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.A.G.; Boziaris, I.S. Inactivation of Listeria Monocytogenes in Raw and Hot Smoked Trout Fillets by High Hydrostatic Pressure Processing Combined with Liquid Smoke and Freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Oliinychenko, Y.K.; Ekonomou, S.I.; Tiwari, B.K.; Stratakos, A.C. Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage. Foods 2024, 13, 1015. [Google Scholar] [CrossRef] [PubMed]
- Naseem, T.; Zahid, U.; Shahzad, A.; Hassan, S.A.; Abdi, G.; Aadil, R.M. Cold Plasma as a Frontier in Combating Foodborne Bacterial Pathogens in Ready-to-Eat (RTE) Foodstuff. Appl. Food Res. 2025, 5, 100842. [Google Scholar] [CrossRef]
- Song, C.; Wang, J.; Wu, L.; Liu, J.; Liu, G.; Gong, D.; Zhang, W.; Wei, J.; Zhang, Z. Quality and Physiological Changes in Fresh-Cut Mango Fruit as Affected by Cold Plasma-Activated Water. Postharvest Biol. Technol. 2025, 225, 113524. [Google Scholar] [CrossRef]
- Shad, E.; Raninen, K.; Podergina, S.; Chan, L.I.; Tong, K.P.; Hälikkä, H.; Huovinen, M.; Korhonen, J. Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing. Appl. Sci. 2024, 14, 9425. [Google Scholar] [CrossRef]
- Mierzwa, D.; Musielak, G. Microwave and Ultrasound Assisted Rotary Drying of Carrot: Analysis of Process Kinetics and Energy Intensity. Appl. Sci. 2024, 14, 10676. [Google Scholar] [CrossRef]
- Gondek, E.; Kamińska-Dwórznicka, A.; Kocira, S.; Oniszczuk, T.; Bialik, M.; Stasiak, M. Convection and Microwave–Convection Drying of Moldavian Dragonhead (Dracocephalum moldavica L.) Leaves. Appl. Sci. 2024, 14, 11496. [Google Scholar] [CrossRef]
- Frangopoulos, T.; Koliouskas, A.; Petridis, D. The Effect of Accelerated Storage Temperature Conditions on the Shelf Life of Pasteurized Orange Juice Based on Microbiological, Physicochemical, and Color Attributes. Appl. Sci. 2024, 14, 10870. [Google Scholar] [CrossRef]
- Frangopoulos, T.; Koliouskas, A.; Petridis, D. Sensory Shelf Life of Pasteurized Orange Juice Stored Under Different Temperature Levels Using Inverse Time Sampling and a Balanced Incomplete Block Design. Appl. Sci. 2025, 15, 1809. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Panagiotou, A.; Mitlianga, P. Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Appl. Sci. 2024, 14, 8406. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Crew, A.; Doran, O.; Hart, J.P. Development of a Disposable, Amperometric Glycerol Biosensor Based on a Screen-Printed Carbon Electrode, Modified with the Electrocatalyst Meldolas Blue, Coated with Glycerol Dehydrogenase and NAD+: Application to the Analysis of Wine Quality. Appl. Sci. 2024, 14, 6118. [Google Scholar] [CrossRef]
- Russell, G.; Nenov, A.; Hancock, J.T. How Hydrogen (H2) Can Support Food Security: From Farm to Fork. Appl. Sci. 2024, 14, 2877. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekonomou, S.I. Novel Thermal and Non-Thermal Technologies Towards Sustainability and Microbiological Food Safety and Quality. Appl. Sci. 2025, 15, 11651. https://doi.org/10.3390/app152111651
Ekonomou SI. Novel Thermal and Non-Thermal Technologies Towards Sustainability and Microbiological Food Safety and Quality. Applied Sciences. 2025; 15(21):11651. https://doi.org/10.3390/app152111651
Chicago/Turabian StyleEkonomou, Sotirios I. 2025. "Novel Thermal and Non-Thermal Technologies Towards Sustainability and Microbiological Food Safety and Quality" Applied Sciences 15, no. 21: 11651. https://doi.org/10.3390/app152111651
APA StyleEkonomou, S. I. (2025). Novel Thermal and Non-Thermal Technologies Towards Sustainability and Microbiological Food Safety and Quality. Applied Sciences, 15(21), 11651. https://doi.org/10.3390/app152111651
