Expression Profiling and Interaction Effects of Three R-Genes Conferring Resistance to Blackleg Disease in Brassica napus
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Inoculation and Disease Severity Assesment
2.3. RNA Isolation and Quality Control
2.4. RT-qPCR
2.5. Statisitcal Modelling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedt, W.; Tu, J.; Fu, T. Academic and Economic Importance of Brassica napus Rapeseed. In The Brassica napus Genome; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–20. [Google Scholar] [CrossRef]
- Dilantha Fernando, W.G.; Zhang, X.; Amarasinghe, C.C. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage. Plants 2016, 5, 12. [Google Scholar] [CrossRef]
- Rashid, M.H.; Liban, S.; Zhang, X.; Parks, P.; Borhan, H.; Dilantha Fernando, W.G. Impact of Brassica napus–Leptosphaeria maculans Interaction on the Emergence of Virulent Isolates of L. maculans, Causal Agent of Blackleg Disease in Canola. Plant Pathol. 2020, 70, 459–474. [Google Scholar] [CrossRef]
- Kutcher, H.R.; Yu, F.; Brun, H. Improving Blackleg Disease Management of Brassica napus from Knowledge of Genetic Interactions with Leptosphaeria maculans. Can. J. Plant Pathol. 2010, 32, 29–34. [Google Scholar] [CrossRef]
- Hwang, S.F.; Strelkov, S.E.; Peng, G.; Ahmed, H.; Zhou, Q.; Turnbull, G. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada. Plants 2016, 5, 31. [Google Scholar] [CrossRef]
- Huang, Y.J.; Pirie, E.J.; Evans, N.; Delourme, R.; King, G.J.; Fitt, B.D.L. Quantitative Resistance to Symptomless Growth of Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape). Plant Pathol. 2009, 58, 314–323. [Google Scholar] [CrossRef]
- Vasquez-Teuber, P.; Rouxel, T.; Mason, A.S.; Soyer, J.L. Breeding and Management of Major Resistance Genes to Stem Canker/Blackleg in Brassica Crops. Theor. Appl. Genet. 2024, 137, 192. [Google Scholar] [CrossRef]
- Amas, J.; Anderson, R.; Edwards, D.; Cowling, W.; Batley, J. Status and Advances in Mining for Blackleg (Leptosphaeria maculans) Quantitative Resistance (QR) in Oilseed Rape (Brassica napus). Theor. Appl. Genet. 2021, 134, 3123–3145. [Google Scholar] [CrossRef]
- Flor, H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Delourme, R.; Pilet-Nayel, M.L.; Archipiano, M.; Horvais, R.; Tanguy, X.; Rouxel, T.; Brun, H.; Renard, M.; Balesdent, M.H. A Cluster of Major Specific Resistance Genes to Leptosphaeria maculans in Brassica napus. Phytopathology 2004, 94, 578–583. [Google Scholar] [CrossRef]
- Rouxel, T.; Balesdent, M.H. Life, Death and Rebirth of Avirulence Effectors in a Fungal Pathogen of Brassica Crops, Leptosphaeria maculans. New Phytol. 2017, 214, 526–532. [Google Scholar] [CrossRef]
- Schreuder, H.M.; van Coller, G.J.; Coetzee, B.; Mostert, D. Fungicides for the Management of Blackleg Disease of Canola Caused by Leptosphaeria maculans in the Western Cape Province of South Africa. Crop Prot. 2025, 199, 107404. [Google Scholar] [CrossRef]
- Cantila, A.Y.; Thomas, W.J.W.; Saad, N.S.M.; Severn-Ellis, A.A.; Anderson, R.; Bayer, P.E.; Edwards, D.; Van de Wouw, A.P.; Batley, J. Identification of Candidate Genes for LepR1 Resistance against Leptosphaeria maculans in Brassica napus. Front. Plant Sci. 2023, 14, 1051994. [Google Scholar] [CrossRef] [PubMed]
- Haddadi, P.; Ma, L.; Wang, H.; Borhan, M.H. Genome-Wide Transcriptomic Analyses Provide Insights into the Lifestyle Transition and Effector Repertoire Of Leptosphaeria maculans during the Colonization Of Brassica Napus seedlings. Mol. Plant Pathol. 2016, 17, 1196–1210. [Google Scholar] [CrossRef]
- Larkan, N.J.; Ma, L.; Haddadi, P.; Buchwaldt, M.; Parkin, I.A.P.; Djavaheri, M.; Borhan, M.H. The Brassica Napus Wall-Associated Kinase-like (WAKL) Gene Rlm9 Provides Race-Specific Blackleg Resistance. Plant J. 2020, 104, 892–900. [Google Scholar] [CrossRef]
- Vollrath, P.; Chawla, H.S.; Alnajar, D.; Gabur, I.; Lee, H.T.; Weber, S.; Ehrig, L.; Koopmann, B.; Snowdon, R.J.; Obermeier, C. Dissection of Quantitative Blackleg Resistance Reveals Novel Variants of Resistance Gene Rlm9 in Elite Brassica napus. Front. Plant Sci. 2021, 12, 749491. [Google Scholar] [CrossRef]
- Harshitha, R.; Arunraj, D.R. Real-Time Quantitative PCR: A Tool for Absolute and Relative Quantification. Biochem. Mol. Biol. Educ. 2021, 49, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Venbrux, M.; Crauwels, S.; Rediers, H. Current and Emerging Trends in Techniques for Plant Pathogen Detection. Front. Plant Sci. 2023, 14, 1120968. [Google Scholar] [CrossRef]
- Mirmajlessi, S.M.; Loit, E.; Mänd, M.; Mansouripour, S.M. Real-Time PCR Applied to Study on Plant Pathogens: Potential Applications in Diagnosis—A Review. Plant Prot. Sci. 2015, 51, 177–190. [Google Scholar] [CrossRef]
- Szała, L.; Kaczmarek, Z.; Matuszczak, M.; Cegielska-Taras, T. Genetic Variability in a Population of Oilseed Rape DH Lines Developed from F1 Hybrids of a Cross between Black-and Yellow-Seeded DH Lines. II. Seed Quality. Agriculture 2022, 12, 340. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Dobrzycka, A.; Wolko, J. Estimation of Additive and Epistatic Gene Effects of Doubled Haploid Lines of Winter Oilseed Rape (Brassica napus L.). Euphytica 2017, 213, 122. [Google Scholar] [CrossRef]
- Raman, H.; Raman, R.; Kilian, A.; Detering, F.; Long, Y.; Edwards, D.; Parkin, I.A.P.; Sharpe, A.G.; Nelson, M.N.; Larkan, N.; et al. A Consensus Map of Rapeseed (Brassica napus L.) Based on Diversity Array Technology Markers: Applications in Genetic Dissection of Qualitative and Quantitative Traits. BMC Genom. 2013, 14, 277. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Latunde-Dada, A.O.; Irzykowski, W.; Cools, H.J.; Stonard, J.F.; Brachaczek, A.; Jedryczka, M. Molecular screening for avirulence alleles AvrLm1 and AvrLm6 in airborne inoculum of Leptosphaeria maculans and winter oilseed rape (Brassica napus) plants from Poland and the UK. J. Appl. Genet. 2014, 55, 529–539. [Google Scholar] [CrossRef]
- Balesdent, M.H.; Attard, A.; Ansan-Melayah, D.; Delourme, M.; Renard, M.; Rouxel, T. Genetic control and host range of avirulence towards Brassica napus cultivars Quinta and Jet neuf in Leptosphaeria maculans. Phytopathology 2001, 91, 70–76. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Qi, W.; Coulter, J.A.; Fang, Y.; Li, X.; Liu, L.; Jin, J.; Niu, Z.; Yue, J.; et al. Screening and Verification of Reference Genes for Analysis of Gene Expression in Winter Rapeseed (Brassica rapa L.) under Abiotic Stress. PLoS ONE 2020, 15, e0236577. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Huang, S.; Guo, T.; Deng, L.; Hua, W. Selection and Evaluation of Novel Reference Genes for Quantitative Reverse Transcription PCR (QRT-PCR) Based on Genome and Transcriptome Data in Brassica napus L. Gene 2014, 538, 113–122. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Fang, H.; Shi, H.; Chen, K.; Zhang, Z.; Tan, X. Selection of Reference Genes for Quantitative Reverse-Transcription Polymerase Chain Reaction Normalization in Brassica napus under Various Stress Conditions. Mol. Genet. Genom. 2014, 289, 1023–1035. [Google Scholar] [CrossRef]
- Bocianowski, J.; Starosta, E.; Jamruszka, T.; Szwarc, J.; Jędryczka, M.; Grynia, M.; Niemann, J. Quantifying Genetic Parameters for Blackleg Resistance in Rapeseed: A Comparative Study. Plants 2024, 13, 2710. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, 2023. [Google Scholar]
- Balesdent, M.-H.; Laval, V.; Noah, J.M.; Bagot, P.; Mousseau, A.; Rouxel, T. Large-Scale Population Survey of Leptosphaeria maculans in France Highlights Both on-Going Breakdowns and Potentially Effective Resistance Genes in Oilseed Rape. Pest Manag. Sci. 2023, 80, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Plissonneau, C.; Daverdin, G.; Ollivier, B.; Blaise, F.; Degrave, A.; Fudal, I.; Rouxel, T.; Balesdent, M. A Game of Hide and Seek between Avirulence Gene AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol. 2015, 209, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Macqueen, A.; Bergelson, J. Modulation of R-Gene Expression across Environments. J. Exp. Bot. 2016, 67, 2093. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.M.; Lamb, M.C.; Chen, C.Y. Association of Differentially Expressed R-Gene Candidates with Leaf Spot Resistance in Peanut (Arachis hypogaea L.). Mol. Biol. Rep. 2021, 48, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, G.; Kutcher, H.R.; Balesdent, M.H.; Delourme, R.; Dilantha Fernando, W.G. Breakdown of Rlm3 Resistance in the Brassica napus–Leptosphaeria maculans Pathosystem in Western Canada. Eur. J. Plant Pathol. 2015, 145, 659–674. [Google Scholar] [CrossRef]
- Zhang, X.; Dilantha Fernando, W.G. Insights into Fighting against Blackleg Disease of Brassica napus in Canada. Crop Pasture Sci. 2018, 69, 40–47. [Google Scholar] [CrossRef]
- Haddadi, P.; Larkan, N.J.; Van deWouw, A.; Zhang, Y.; Xiang Neik, T.; Beynon, E.; Bayer, P.; Edwards, D.; Batley, J.; Borhan, M.H. Brassica napus Genes Rlm4 and Rlm7, Conferring Resistance to Leptosphaeria maculans, Are Alleles of the Rlm9 Wall-associated Kinase-like Resistance Locus. Plant Biotechnol. J. 2022, 20, 1229. [Google Scholar] [CrossRef]
- Borhan, M.H.; Van De Wouw, A.P.; Larkan, N.J. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. Annu. Rev. Phytopathol. 2022, 60, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Dilantha Fernando, W.G.; Zhang, X.; Selin, C.; Zou, Z.; Liban, S.H.; McLaren, D.L.; Parks, P.S.; Harunur Rashid, M.; Rasanie Padmathilake, K.E.; Rong, L.; et al. A Six-Year Investigation of the Dynamics of Avirulence Allele Profiles, Blackleg Incidence, and Mating Type Alleles of Leptosphaeria maculans Populations Associated with Canola Crops in Manitoba, Canada. Plant Dis. 2018, 102, 790–798. [Google Scholar] [CrossRef]
- Mitrousia, G.K.; Huang, Y.J.; Qi, A.; Sidique, S.N.M.; Fitt, B.D.L. Effectiveness of Rlm7 Resistance against Leptosphaeria maculans (Phoma Stem Canker) in UK Winter Oilseed Rape Cultivars. Plant Pathol. 2018, 67, 1339–1353. [Google Scholar] [CrossRef]
- Kozak, M.; Bocianowski, J.; Liersch, A.; Tartanus, M.; Bartkowiak-Broda, I.; Piotto, F.A.; Azevedo, R.A. Genetic divergence is not the same as phenotypic divergence. Mol. Breed. 2011, 28, 277–280. [Google Scholar] [CrossRef]
- Raman, H.; Raman, R.; Diffey, S.; Qiu, Y.; McVittie, B.; Barbulescu, D.M.; Salisbury, P.A.; Marcroft, S.; Delourme, R. Stable Quantitative Resistance Loci to Blackleg Disease in Canola (Brassica napus L.) over Continents. Front. Plant Sci. 2018, 871, 412957. [Google Scholar] [CrossRef]
- Huang, Y.J.; Mitrousia, G.K.; Sidique, S.N.M.; Qi, A.; Fitt, B.D.L. Combining R Gene and Quantitative Resistance Increases Effectiveness of Cultivar Resistance against Leptosphaeria maculans in Brassica napus in Different Environments. PLoS ONE 2018, 13, e0197752. [Google Scholar] [CrossRef]
- Sprague, S.J.; Balesdent, M.H.; Brun, H.; Hayden, H.L.; Marcroft, S.J.; Pinochet, X.; Rouxel, T.; Howlett, B.J. Major Gene Resistance in Brassica Napus (Oilseed Rape) Is Overcome by Changes in Virulence of Populations of Leptosphaeria maculans in France and Australia. Eur. J. Plant Pathol. 2006, 114, 33–40. [Google Scholar] [CrossRef]
- Larkan, N.J.; Raman, H.; Lydiate, D.J.; Robinson, S.J.; Yu, F.; Barbulescu, D.M.; Raman, R.; Luckett, D.J.; Burton, W.; Wratten, N.; et al. Multi-Environment QTL Studies Suggest a Role for Cysteine-Rich Protein Kinase Genes in Quantitative Resistance to Blackleg Disease in Brassica napus. BMC Plant Biol. 2016, 16, 183. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, M.; Wang, J. Epigenetic Modification Brings New Opportunities for Gene Capture by Transposable Elements in Allopolyploid Brassica napus. Hortic. Res. 2025, 12, uhaf028. [Google Scholar] [CrossRef] [PubMed]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Cyplik, A.; Piaskowska, D.; Czembor, P.; Bocianowski, J. The Use of Weighted Multiple Linear Regression to Estimate QTL × QTL × QTL Interaction Effects of Winter Wheat (Triticum Aestivum L.) Doubled-Haploid Lines. J. Appl. Genet. 2023, 64, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Cyplik, A.; Bocianowski, J. Analytical and Numerical Comparisons of Two Methods of Estimation of Additive × Additive × Additive Interaction of QTL Effects. J. Appl. Genet. 2022, 63, 213–221. [Google Scholar] [CrossRef]



| Primer | Forward | Reverse | Amplicon Length (Base Pairs) | 
|---|---|---|---|
| Rlm 3 | CCATCACGTCTCCCTCAAGT | ACAAGCTCGTTCAAGCACCT | 242 bp | 
| Rlm 4 (UDP-galactose transporter 1) | AACATCGTTGGGGAATGT | AACAATGGGGACAAGAGACG | 218 bp | 
| Rlm 7 (VAP 1-1/protein binding) | TCTTCACCAAGGGCTTCTGT | TTGCTGTCACGCCTTAACTG | 206 bp | 
| PPR (Postysynaptic protein-related) | TGGTGTGCGATAAGTGTGAGA | GGTGTCCATCTGTTCTTCTTGG | 143 bp | 
| SAND (SAND family protein) | GCTGAAGGTGGATTGCGTG | GGAGTTTCTGGTATGCT CGGTAT | 244 bp | 
| DH line | Line Number | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 29 | 30 | 32 | 38 | 43 | 46 | 48 | 55 | 57 | 58 | 58.1 | 59 | 60 | 65 | 73 | 73.1 | 74 | 74.1 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DH2 0/21DH6712 | 1 | 1.000 | 0.873 | 0.972 | 0.990 | 0.950 | 0.973 | 0.979 | 0.945 | 0.898 | 0.982 | 0.964 | 0.826 | 0.989 | 0.982 | 0.955 | 0.934 | 0.872 | 0.908 | 0.977 | 0.809 | 0.971 | 0.835 | 0.789 | 0.993 | 0.986 | 
| DH2 0/21DH6732 | 2 | 0.338 | 1.000 | 0.883 | 0.892 | 0.966 | 0.962 | 0.887 | 0.915 | 0.982 | 0.847 | 0.839 | 0.742 | 0.809 | 0.897 | 0.977 | 0.932 | 0.633 | 0.786 | 0.925 | 0.665 | 0.938 | 0.829 | 0.808 | 0.854 | 0.871 | 
| DH2 0/21DH 6735 | 3 | 0.850 | 0.188 | 1.000 | 0.990 | 0.956 | 0.967 | 0.999 | 0.965 | 0.864 | 0.974 | 0.986 | 0.862 | 0.964 | 0.970 | 0.940 | 0.955 | 0.849 | 0.923 | 0.974 | 0.868 | 0.987 | 0.842 | 0.739 | 0.989 | 0.986 | 
| DH2 0/21DH6734 | 4 | 0.850 | 0.188 | 1.000 | 1.000 | 0.954 | 0.979 | 0.996 | 0.946 | 0.895 | 0.969 | 0.989 | 0.810 | 0.972 | 0.993 | 0.959 | 0.969 | 0.827 | 0.947 | 0.972 | 0.874 | 0.991 | 0.809 | 0.735 | 0.993 | 0.998 | 
| DH2 0/21DH6725 | 5 | 0.912 | 0.250 | 0.938 | 0.938 | 1.000 | 0.989 | 0.955 | 0.987 | 0.956 | 0.954 | 0.909 | 0.881 | 0.924 | 0.938 | 0.984 | 0.933 | 0.822 | 0.823 | 0.991 | 0.713 | 0.972 | 0.923 | 0.880 | 0.946 | 0.935 | 
| DH2 0/21DH6703 | 7 | 0.900 | 0.238 | 0.950 | 0.950 | 0.988 | 1.000 | 0.973 | 0.964 | 0.965 | 0.952 | 0.944 | 0.820 | 0.938 | 0.977 | 0.996 | 0.969 | 0.793 | 0.891 | 0.985 | 0.786 | 0.990 | 0.861 | 0.821 | 0.963 | 0.968 | 
| DH2 0/21DH6709 | 8 | 0.900 | 0.438 | 0.750 | 0.750 | 0.812 | 0.800 | 1.000 | 0.957 | 0.875 | 0.971 | 0.991 | 0.839 | 0.966 | 0.981 | 0.948 | 0.965 | 0.837 | 0.938 | 0.973 | 0.879 | 0.991 | 0.825 | 0.730 | 0.991 | 0.993 | 
| DH2 0/21DH6733 | 29 | 0.700 | 0.637 | 0.550 | 0.550 | 0.613 | 0.600 | 0.800 | 1.000 | 0.896 | 0.975 | 0.910 | 0.943 | 0.942 | 0.913 | 0.945 | 0.896 | 0.889 | 0.797 | 0.992 | 0.702 | 0.956 | 0.953 | 0.884 | 0.955 | 0.927 | 
| DH2 0/21DH6747 | 30 | 0.662 | 0.000 | 0.812 | 0.812 | 0.750 | 0.762 | 0.562 | 0.363 | 1.000 | 0.855 | 0.829 | 0.710 | 0.834 | 0.911 | 0.985 | 0.916 | 0.654 | 0.786 | 0.925 | 0.633 | 0.925 | 0.814 | 0.834 | 0.863 | 0.876 | 
| DH2 0/21DH6750 | 32 | 0.650 | 0.688 | 0.500 | 0.500 | 0.562 | 0.550 | 0.750 | 0.950 | 0.312 | 1.000 | 0.943 | 0.918 | 0.992 | 0.940 | 0.924 | 0.888 | 0.940 | 0.845 | 0.986 | 0.753 | 0.951 | 0.905 | 0.837 | 0.989 | 0.960 | 
| DH2 0/21DH6748 | 38 | 0.650 | 0.688 | 0.500 | 0.500 | 0.562 | 0.550 | 0.750 | 0.950 | 0.312 | 1.000 | 1.000 | 0.768 | 0.950 | 0.981 | 0.915 | 0.964 | 0.790 | 0.972 | 0.934 | 0.932 | 0.977 | 0.739 | 0.629 | 0.980 | 0.994 | 
| DH2 0/21DH6749 | 43 | 0.900 | 0.438 | 0.750 | 0.750 | 0.812 | 0.800 | 1.000 | 0.800 | 0.562 | 0.750 | 0.750 | 1.000 | 0.867 | 0.740 | 0.783 | 0.696 | 0.940 | 0.580 | 0.906 | 0.486 | 0.809 | 0.972 | 0.878 | 0.855 | 0.783 | 
| DH2 0/21DH6729 | 46 | 0.950 | 0.387 | 0.800 | 0.800 | 0.863 | 0.850 | 0.950 | 0.750 | 0.613 | 0.700 | 0.700 | 0.950 | 1.000 | 0.950 | 0.909 | 0.883 | 0.929 | 0.871 | 0.966 | 0.779 | 0.940 | 0.850 | 0.788 | 0.992 | 0.968 | 
| DH2 0/21DH6731 | 48 | 0.912 | 0.250 | 0.938 | 0.938 | 1.000 | 0.988 | 0.812 | 0.613 | 0.750 | 0.562 | 0.562 | 0.812 | 0.863 | 1.000 | 0.964 | 0.980 | 0.766 | 0.963 | 0.951 | 0.883 | 0.986 | 0.756 | 0.698 | 0.975 | 0.994 | 
| DH2 0/21DH9470 | 55 | 0.950 | 0.287 | 0.900 | 0.900 | 0.963 | 0.950 | 0.850 | 0.650 | 0.713 | 0.600 | 0.600 | 0.850 | 0.900 | 0.963 | 1.000 | 0.962 | 0.747 | 0.868 | 0.970 | 0.749 | 0.977 | 0.845 | 0.825 | 0.936 | 0.946 | 
| DH2 0/21DH9467 | 57 | 0.850 | 0.188 | 1.000 | 1.000 | 0.938 | 0.950 | 0.750 | 0.550 | 0.812 | 0.500 | 0.500 | 0.750 | 0.800 | 0.938 | 0.900 | 1.000 | 0.663 | 0.958 | 0.924 | 0.897 | 0.986 | 0.721 | 0.643 | 0.933 | 0.968 | 
| DH2 0/21DH9446 | 58 | 0.800 | 0.137 | 0.950 | 0.950 | 0.887 | 0.900 | 0.700 | 0.500 | 0.863 | 0.450 | 0.450 | 0.700 | 0.750 | 0.887 | 0.850 | 0.950 | 1.000 | 0.625 | 0.885 | 0.518 | 0.783 | 0.892 | 0.821 | 0.889 | 0.813 | 
| DH2 0/21DH9446 | 58.1 | 0.800 | 0.137 | 0.950 | 0.950 | 0.887 | 0.900 | 0.700 | 0.500 | 0.863 | 0.450 | 0.450 | 0.700 | 0.750 | 0.887 | 0.850 | 0.950 | 1.000 | 1.000 | 0.844 | 0.973 | 0.934 | 0.561 | 0.454 | 0.916 | 0.961 | 
| DH2 0/21DH9450 | 59 | 0.662 | 0.000 | 0.812 | 0.812 | 0.750 | 0.762 | 0.562 | 0.363 | 1.000 | 0.312 | 0.312 | 0.562 | 0.613 | 0.750 | 0.713 | 0.812 | 0.863 | 0.863 | 1.000 | 0.739 | 0.974 | 0.926 | 0.875 | 0.976 | 0.957 | 
| DH2 0/21DH9455 | 60 | 0.933 | 0.271 | 0.917 | 0.917 | 0.979 | 0.967 | 0.833 | 0.633 | 0.729 | 0.583 | 0.583 | 0.833 | 0.883 | 0.979 | 0.983 | 0.917 | 0.867 | 0.867 | 0.729 | 1.000 | 0.862 | 0.422 | 0.253 | 0.840 | 0.896 | 
| DH2 0/21DH6761 | 65 | 0.850 | 0.188 | 1.000 | 1.000 | 0.938 | 0.950 | 0.750 | 0.550 | 0.812 | 0.500 | 0.500 | 0.750 | 0.800 | 0.938 | 0.900 | 1.000 | 0.950 | 0.950 | 0.812 | 0.917 | 1.000 | 0.823 | 0.748 | 0.974 | 0.986 | 
| DH2 0/21DH9471 | 73 | 0.800 | 0.537 | 0.650 | 0.650 | 0.713 | 0.700 | 0.900 | 0.900 | 0.463 | 0.850 | 0.850 | 0.900 | 0.850 | 0.713 | 0.750 | 0.650 | 0.600 | 0.600 | 0.463 | 0.733 | 0.650 | 1.000 | 0.962 | 0.840 | 0.775 | 
| DH2 0/21DH9471 | 73.1 | 0.800 | 0.537 | 0.650 | 0.650 | 0.713 | 0.700 | 0.900 | 0.900 | 0.463 | 0.850 | 0.850 | 0.900 | 0.850 | 0.713 | 0.750 | 0.650 | 0.600 | 0.600 | 0.463 | 0.733 | 0.650 | 1.000 | 1.000 | 0.763 | 0.696 | 
| DH2 0/21DH9447 | 74 | 0.950 | 0.287 | 0.900 | 0.900 | 0.963 | 0.950 | 0.850 | 0.650 | 0.713 | 0.600 | 0.600 | 0.850 | 0.900 | 0.963 | 1.000 | 0.900 | 0.850 | 0.850 | 0.713 | 0.983 | 0.900 | 0.750 | 0.750 | 1.000 | 0.990 | 
| DH2 0/21DH9447 | 74.1 | 0.950 | 0.287 | 0.900 | 0.900 | 0.963 | 0.950 | 0.850 | 0.650 | 0.713 | 0.600 | 0.600 | 0.850 | 0.900 | 0.963 | 1.000 | 0.900 | 0.850 | 0.850 | 0.713 | 0.983 | 0.900 | 0.750 | 0.750 | 1.000 | 1.000 | 
| Parameter | Effect | 
|---|---|
| Constant | 2.2 | 
| Rlm3 | −13.9 *** | 
| Rlm4 | −1.14 | 
| Rlm7 | 14.5 *** | 
| Rlm3 × Rlm4 | −15.8 *** | 
| Rlm3 × Rlm7 | 0.68 | 
| Rlm4 × Rlm7 | 14.6 *** | 
| Rlm3 × Rlm4 × Rlm7 | 2.89 * | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemann, J.; Starosta, E.; Kaczmarek, J.; Pawłowicz, I.; Bocianowski, J. Expression Profiling and Interaction Effects of Three R-Genes Conferring Resistance to Blackleg Disease in Brassica napus. Appl. Sci. 2025, 15, 11613. https://doi.org/10.3390/app152111613
Niemann J, Starosta E, Kaczmarek J, Pawłowicz I, Bocianowski J. Expression Profiling and Interaction Effects of Three R-Genes Conferring Resistance to Blackleg Disease in Brassica napus. Applied Sciences. 2025; 15(21):11613. https://doi.org/10.3390/app152111613
Chicago/Turabian StyleNiemann, Janetta, Ewa Starosta, Joanna Kaczmarek, Izabela Pawłowicz, and Jan Bocianowski. 2025. "Expression Profiling and Interaction Effects of Three R-Genes Conferring Resistance to Blackleg Disease in Brassica napus" Applied Sciences 15, no. 21: 11613. https://doi.org/10.3390/app152111613
APA StyleNiemann, J., Starosta, E., Kaczmarek, J., Pawłowicz, I., & Bocianowski, J. (2025). Expression Profiling and Interaction Effects of Three R-Genes Conferring Resistance to Blackleg Disease in Brassica napus. Applied Sciences, 15(21), 11613. https://doi.org/10.3390/app152111613
 
        






 
       